DOI QR코드

DOI QR Code

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens

  • Kim, Mi-Sun (Clean Fuel Research Center, Korea Institute of Energy Research) ;
  • Cha, Jaehwan (Clean Fuel Research Center, Korea Institute of Energy Research) ;
  • Kim, Dong-Hoon (Clean Fuel Research Center, Korea Institute of Energy Research)
  • 투고 : 2012.04.05
  • 심사 : 2012.06.01
  • 발행 : 2012.10.28

초록

In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.

키워드

참고문헌

  1. Aelterman, P., S. Freguia, J. Keller, W. Verstraete, and K. Rabaey. 2008. The anode potential regulates bacterial activity in microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 409-418. https://doi.org/10.1007/s00253-007-1327-8
  2. Bennetto, H. P. 1990. Electricity generation by microorganisms. Biotechnol. Edu. 1: 163-168.
  3. Biffinger, J. C., J. Pietron, R. Ray, B. Little, and B. R. Ringeisen. 2007. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22: 1672-1679. https://doi.org/10.1016/j.bios.2006.07.027
  4. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295: 483-485. https://doi.org/10.1126/science.1066771
  5. Bond, D. R. and D. R. Lovley. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548-1555. https://doi.org/10.1128/AEM.69.3.1548-1555.2003
  6. Cha, J., S. Choi, H. Yu, H. Kim, and C. Kim. 2010. Directly applicable microbial fuel cells in aeration tank for wastewater treatment. Bioelectrochemistry 78: 72-79. https://doi.org/10.1016/j.bioelechem.2009.07.009
  7. Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232. https://doi.org/10.1038/nbt867
  8. Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 16: 163-177.
  9. Debabov, V. G. 2008. Electricity from microorganisms. Microbiology 77: 123-131. https://doi.org/10.1134/S002626170802001X
  10. Du, Z., H. Li, and T. Gu. 2007. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25: 464-482. https://doi.org/10.1016/j.biotechadv.2007.05.004
  11. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and H. J. Kim. 2003. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327-334. https://doi.org/10.1016/S0956-5663(02)00110-0
  12. Kieft, T. L., J. K. Fredrickson, T. C. Onstott, Y. A. Gorby, H. M. Kostandarithes, T. J. Bailey, et al. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65: 1214-1221.
  13. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of an Fe(III)-reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127-131.
  14. Kim, M. S. and Y. J. Lee. 2010. Optimization of culture conditions and electricity generation using Geobacter sulfurreducens in a dual-chambered microbial fuel cell. Int. J. Hydrogen Energy 35: 13028-13034. https://doi.org/10.1016/j.ijhydene.2010.04.061
  15. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim. 2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145-152. https://doi.org/10.1016/S0141-0229(01)00478-1
  16. Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons, New York, NY, USA.
  17. Methe, B. A., K. E. Nelson, J. A. Eisen, I. T. Paulsen, W. Nelson, J. F. Heidelberg, et al. 2003. Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments. Science 302: 1967-1969. https://doi.org/10.1126/science.1088727
  18. Min, B., S. Cheng, and B. E. Logan. 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Wat. Res. 39: 1675-1686. https://doi.org/10.1016/j.watres.2005.02.002
  19. Myers, C. R. and J. M. Myers. 1992. Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174: 3429-3438.
  20. Nimje, V. R., C. Y. Chen, C. C. Chen, J. Y. Tsai, H. R. Chen, Y. M. Huang, et al. 2011. Microbial fuel cell of Enterobacter cloacae: Effect of anodic pH microenvironment on current, power density, internal resistance and electrochemical losses. Int. J. Hydrogen Energy 36: 11093-11101. https://doi.org/10.1016/j.ijhydene.2011.05.159
  21. Rabaey, K., N. Boon, M. Hofte, and W. Verstraete. 2005. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39: 3401-3408. https://doi.org/10.1021/es048563o
  22. Reguera, G., K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435: 1098-1101. https://doi.org/10.1038/nature03661
  23. Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and A. H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 180: 683-694. https://doi.org/10.1016/j.jpowsour.2008.02.074
  24. Sharma, Y. and B. Li. 2010. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs). Bioresour. Technol. 101: 1844-1850. https://doi.org/10.1016/j.biortech.2009.10.040
  25. Veer Raghavulu, S., S. Venkata Mohan, M. Venkateswar Reddy, G. Mohanakrishna, and P. N. Sarma. 2009. Behavior of single chambered mediatorless microbial fuel cell (MFC) at acidophilic, neutral and alkaline microenvironments during chemical wastewater treatment. Int. J. Hydrogen Energy 34: 7547-7554. https://doi.org/10.1016/j.ijhydene.2009.05.071
  26. Zhuang, L., S. Zhou, Y. Li, and Y. Yuan. 2010. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode. Bioresour. Technol. 101: 3514-3519. https://doi.org/10.1016/j.biortech.2009.12.105

피인용 문헌

  1. Production of Acetate from Carbon Dioxide in Bioelectrochemical Systems Based on Autotrophic Mixed Culture vol.23, pp.8, 2012, https://doi.org/10.4014/jmb.1304.04039
  2. Evaluation of microbial fuel cell operation using algae as an oxygen supplier: carbon paper cathode vs. carbon brush cathode vol.37, pp.12, 2012, https://doi.org/10.1007/s00449-014-1223-4
  3. Hexavalent chromium removal and bioelectricity generation byOchrobactrumsp. YC211 under different oxygen conditions vol.51, pp.6, 2012, https://doi.org/10.1080/10934529.2015.1128731
  4. Optimization of the performance of an air–cathode MFC by changing solid retention time vol.92, pp.7, 2012, https://doi.org/10.1002/jctb.5175
  5. Effect of hydraulic retention time on electricity generation using a solid plain-graphite plate microbial fuel cell anoxic/oxic process for treating pharmaceutical sewage vol.53, pp.13, 2012, https://doi.org/10.1080/10934529.2018.1530338
  6. From Microbial Fuel Cells to Biobatteries: Moving toward On‐Demand Micropower Generation for Small‐Scale Single‐Use Applications vol.4, pp.7, 2012, https://doi.org/10.1002/admt.201900079
  7. Bioelectrochemical energy storage in a Microbial Redox Flow Cell vol.39, pp.None, 2012, https://doi.org/10.1016/j.est.2021.102610