• 제목/요약/키워드: Geobacter sulfurreducens

검색결과 3건 처리시간 0.015초

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens

  • Kim, Mi-Sun;Cha, Jaehwan;Kim, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1395-1400
    • /
    • 2012
  • In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.

미생물 연료전지에서 Fe[III] 환원 미생물 Geobacter sulfurreducens를 이용한 전기 생산 (Electricity Production from Fe[III]-reducing Bacterium Geobacter sulfurreducens in Microbial Fuel Cell)

  • 이유진;오유관;김미선
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.498-504
    • /
    • 2008
  • Metal-reducing bacterium, Geobacter sulfurreducens is available for mediator-less microbial fuel cell (MFC) because it has biological nanowires(pili) which transfer electrons to outside the cell. In this study, in the anode chamber of the MFC system using G. sulfurreducens, the concentrations of NaCl, sodium phosphate and sodium bicarbonate as electrolytes were mainly optimized for the generation of electricity from acetate. 0.4%(w/v) NaClO and 0.5M $H_2SO_4$ could be utilized for the sterilization of acrylic plates and proton exchange membrane (major construction materials of the MFC reactor), respectively. When NaCl concentration in anode phosphate buffer increased from 5 to 50 mM, power density increased from 6 to $20\;mW/m^2$. However, with increasing sodium phosphate buffer concentration from 5 to 50 mM, power density significantly decreased from 18 to $1\;mW/m^2$. Twenty-four mM sodium bicarbonate did not affect electricity generation as well as pH under 50 mM phosphate buffer condition. Optimized anode chamber of MFC using G. sulfurreducens generated relatively high power density ($20\;mW/m^2$) with the maximum coulombic efficiency (41.3%).

Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces

  • Dolch, Kerstin;Wuske, Jessica;Gescher, Johannes
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권3호
    • /
    • pp.511-520
    • /
    • 2016
  • The most energy-demanding step of wastewater treatment is the aeration-dependent elimination of organic carbon. Microbial fuel cells (MFCs) offer an alternative strategy in which carbon elimination is conducted by anaerobic microorganisms that transport respiratory electrons originating from carbon oxidation to an anode. Hence, chemical energy is directly transformed into electrical energy. In this study, the use and stability of barcode-containing exoelectrogenic model biofilms under non-axenic wastewater treatment conditions are described. Genomic barcodes were integrated in Shewanella oneidensis, Geobacter sulfurreducens, and G. metallireducens. These barcodes are unique for each strain and allow distinction between those cells and naturally occurring wild types as well as quantification of the amount of cells in a biofilm via multiplex qPCR. MFCs were pre-incubated with these three strains, and after 6 days the anodes were transferred into MFCs containing synthetic wastewater with 1% wastewater sludge. Over time, the system stabilized and the coulomb efficiency was constant. Overall, the initial synthetic biofilm community represented half of the anodic population at the end of the experimental timeline. The part of the community that contained a barcode was dominated by G. sulfurreducens cells (61.5%), while S. oneidensis and G. metallireducens cells comprised 10.5% and 17.9%, respectively. To the best of our knowledge, this is the first study to describe the stability of a synthetic exoelectrogenic consortium under non-axenic conditions. The observed stability offers new possibilities for the application of synthetic biofilms and synthetically engineered organisms fed with non-sterile waste streams.