참고문헌
- Ahsan, N., D. -G. Lee, S. -H. Lee, K. Y. Kang, J. J. Lee, P. J. Kim, H. S. Yoon, J. S. Kim and B. -H. Lee. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182-1193. https://doi.org/10.1016/j.chemosphere.2006.10.075
- Banzet, N., C. Richaud, Y. Deveaux, M. Kazmaier, J. Gagnon and C. Triantaphylides. 1998. Accumulationn of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13:519-527. https://doi.org/10.1046/j.1365-313X.1998.00056.x
- Cheeseman, J. M. 2007. Hydrogen peroxide and plant stress: A challenging relationship, Plant stress. Global Science Books, pp. 4-15.
- Dhankher, O. P., Y. Li, B. P. Rosen, J. Shi, D. Salt, J. F. Senecoff, N. A. Sashti and R. B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20:1140-1145. https://doi.org/10.1038/nbt747
- Ekmekci, Y. and S. Terzioglu. 2005. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic. Biochem. Physiol. 83:69-81. https://doi.org/10.1016/j.pestbp.2005.03.012
- Eckey-Kaltenbach, H., E. Kiefer, E. Grosskopf, D. Ernst and H. J. Sandermann. 1997. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock. Plant Mol. Biol. 33:343-350. https://doi.org/10.1023/A:1005786317975
- Ferullo, J. -M., L. Nespoulous and C. Triantaphylides. 1994. Gamma-ray-induced changes in the synthesis of tomato pericarp protein. Plant Cell Environ. 17:901-911. https://doi.org/10.1111/j.1365-3040.1994.tb00319.x
- Guo, S., W. Wharton, P. Moseley and H. Shi. 2007. Heat shock protein 70 regulates cellular redox status by modulating glutathione related enzyme activities. Cell Stress Chaperones 12:245-254. https://doi.org/10.1379/CSC-265.1
- Hannaway, D. B., C. Daly, W. Cao, W. Luo, Y. Wei, W. Zhang, A. Xu, C. Lu, X. Shi and X. Li. 2005. Forage species suitability mapping for China using topographic, climatic and soils spatial data and quantitative plant tolerances. Agric. Sci. China. 4:660-667.
- Heckathorn, S. A., S. L. Ryan, J. A. Baylis, D. F. Wang, E. W. Hamilton, L. Cundiff and D. S. Luthe. 2002. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem during heat stress. Funct. Plant Biol. 29:933-944.
- Heckathorn, S. A., C. A. Downs, T. D. Sharkey and J. S. Coleman. 1998. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116:439-444. https://doi.org/10.1104/pp.116.1.439
- Jiang, Y. and B. Huang. 2000. Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci. 40:1358-1362. https://doi.org/10.2135/cropsci2000.4051358x
- Kim, K. -H., I. Alam, K. -W. Lee, S. A. Sharmin, S. -S. Kwak, S. Y. Lee and B. -H. Lee. 2011. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol. Lett. 32:571-576.
- Lee, S. -H., N. Ahsan, K. -W. Lee, D. -H. Kim, D. -G. Lee, S. -S. Kwak, S. -Y. Kwon, T. -H. Kim and B. -H. Lee. 2007. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 164:1626-1638. https://doi.org/10.1016/j.jplph.2007.01.003
- Lee, S. -H., D. -G. Lee, H. -S. Woo and B. -H. Lee. 2004. Development of transgenic tall fescue plants from mature seed-derived callus via Agrobacterium-mediated transformation. Asian-Aust J. Anim. Sci. 17:1390-1394. https://doi.org/10.5713/ajas.2004.1390
- Lee, S. -H., D. -G. Lee, H. -S. Woo, K. -W. Lee, D. -H. Kim, S. -S. Kwak, J. -S. Kim, H. Kim, N. Ahsan, M. S. Choi, J. -K. Yang and B. -H. Lee. 2006. Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Sci. 171:408-414. https://doi.org/10.1016/j.plantsci.2006.05.006
- Lee, K. -W., J. -Y. Cha, K. -H. Kim, Y. -G Kim, B. -H. Lee and S. -H. Lee. 2012a. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol. Lett. 34: 167-174. https://doi.org/10.1007/s10529-011-0750-1
- Lee, K. -W., K. -H. Kim, Y. -G Kim, B. -H. Lee and S. -H. Lee. 2012b. Identification of MsHsp23 gene using annealing control primer system. Acta Physiol. Plant. 34:807-811. https://doi.org/10.1007/s11738-011-0853-2
- Leshem, Y. 1992. Plant membranes: A biophysical approach to structure, development and senescence. Kluwer Academic Publishers: 1-266.
- Lin, C. C. and C. H. Kao. 2001. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 160:323-329. https://doi.org/10.1016/S0168-9452(00)00396-4
- Neta-Sharir, I., T. Isaacson, S. Lurie and D. Weiss. 2005. Dual role for tomato heat shock protein 21: Protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 17:1829-1838. https://doi.org/10.1105/tpc.105.031914
- Sato, Y. and S. Yokoya. 2008. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 27:329-334. https://doi.org/10.1007/s00299-007-0470-0
- Sugino, M., T. Hibino, Y. Tanaka, N. Nii, T. Takabe and T. Takabe. 1999. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica aquires resistance to salt stress in transgenic tobacco plants. Plant Sci. 137:81-88.
- Sabehat, A., D. Weiss and S. Lurie. 1996. The correlation between heat shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol. 110:531-537. https://doi.org/10.1104/pp.110.2.531
- Soto, A., I. Allona, C. Collada, M. A. Guevara, R. Casado, E. R. Cerezo, C. Aragoncillo and L. Gomez. 1999. Heterologous expression of a plant small heat shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120:521-528. https://doi.org/10.1104/pp.120.2.521
- Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109: 105-113. https://doi.org/10.1016/0168-9452(95)04156-O
- Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14. https://doi.org/10.1007/s00425-003-1105-5
- Yan, L. J., E. S. Christians, L. Liu, X. Xiao, R. S. Sohal and I. J. Benjamin. 2002. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J. 21:5164-5172. https://doi.org/10.1093/emboj/cdf528
피인용 문헌
- (Diptera: Drosophilidae) Under Ultraviolet A Radiation Stress vol.43, pp.5, 2014, https://doi.org/10.1603/EN13240
- Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells vol.37, pp.4, 2015, https://doi.org/10.1007/s10529-014-1749-1
- Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress vol.126, pp.1, 2016, https://doi.org/10.1007/s11240-016-0981-x
- Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops vol.253, pp.3, 2016, https://doi.org/10.1007/s00709-015-0905-3
- Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.00827
- pp.1724-5575, 2018, https://doi.org/10.1080/11263504.2017.1403392
- Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea vol.137, pp.3, 2018, https://doi.org/10.1007/s11120-018-0527-7
- Improving the Yield and Nutritional Quality of Forage Crops vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00535
- Comparative Physiological and Transcriptional Analyses of Two Contrasting Drought Tolerant Alfalfa Varieties vol.6, pp.None, 2015, https://doi.org/10.3389/fpls.2015.01256
- Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots vol.36, pp.3, 2012, https://doi.org/10.5333/kgfs.2016.36.3.243
- Protocol for Agrobacterium-mediated transformation of tall fescue and future perspective on the application of genome editing vol.37, pp.2, 2012, https://doi.org/10.5511/plantbiotechnology.20.0309a
- Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure vol.10, pp.4, 2012, https://doi.org/10.3390/plants10040623