DOI QR코드

DOI QR Code

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won (Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Choi, Gi-Jun (Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Ki-Yong (Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Ji, Hee-Jung (Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Park, Hyung-Soo (Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration) ;
  • Kim, Yong-Goo (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Lee, Byung-Hyun (Division of Applied Life Science (BK21 Program), Gyeongsang National University) ;
  • Lee, Sang-Hoon (Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration)
  • 투고 : 2012.01.15
  • 심사 : 2012.03.29
  • 발행 : 2012.06.01

초록

Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.

키워드

참고문헌

  1. Ahsan, N., D. -G. Lee, S. -H. Lee, K. Y. Kang, J. J. Lee, P. J. Kim, H. S. Yoon, J. S. Kim and B. -H. Lee. 2007. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182-1193. https://doi.org/10.1016/j.chemosphere.2006.10.075
  2. Banzet, N., C. Richaud, Y. Deveaux, M. Kazmaier, J. Gagnon and C. Triantaphylides. 1998. Accumulationn of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13:519-527. https://doi.org/10.1046/j.1365-313X.1998.00056.x
  3. Cheeseman, J. M. 2007. Hydrogen peroxide and plant stress: A challenging relationship, Plant stress. Global Science Books, pp. 4-15.
  4. Dhankher, O. P., Y. Li, B. P. Rosen, J. Shi, D. Salt, J. F. Senecoff, N. A. Sashti and R. B. Meagher. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat. Biotechnol. 20:1140-1145. https://doi.org/10.1038/nbt747
  5. Ekmekci, Y. and S. Terzioglu. 2005. Effects of oxidative stress induced by paraquat on wild and cultivated wheats. Pestic. Biochem. Physiol. 83:69-81. https://doi.org/10.1016/j.pestbp.2005.03.012
  6. Eckey-Kaltenbach, H., E. Kiefer, E. Grosskopf, D. Ernst and H. J. Sandermann. 1997. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock. Plant Mol. Biol. 33:343-350. https://doi.org/10.1023/A:1005786317975
  7. Ferullo, J. -M., L. Nespoulous and C. Triantaphylides. 1994. Gamma-ray-induced changes in the synthesis of tomato pericarp protein. Plant Cell Environ. 17:901-911. https://doi.org/10.1111/j.1365-3040.1994.tb00319.x
  8. Guo, S., W. Wharton, P. Moseley and H. Shi. 2007. Heat shock protein 70 regulates cellular redox status by modulating glutathione related enzyme activities. Cell Stress Chaperones 12:245-254. https://doi.org/10.1379/CSC-265.1
  9. Hannaway, D. B., C. Daly, W. Cao, W. Luo, Y. Wei, W. Zhang, A. Xu, C. Lu, X. Shi and X. Li. 2005. Forage species suitability mapping for China using topographic, climatic and soils spatial data and quantitative plant tolerances. Agric. Sci. China. 4:660-667.
  10. Heckathorn, S. A., S. L. Ryan, J. A. Baylis, D. F. Wang, E. W. Hamilton, L. Cundiff and D. S. Luthe. 2002. In vivo evidence from an Agrostis stolonifera selection genotype that chloroplast small heat-shock proteins can protect photosystem during heat stress. Funct. Plant Biol. 29:933-944.
  11. Heckathorn, S. A., C. A. Downs, T. D. Sharkey and J. S. Coleman. 1998. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116:439-444. https://doi.org/10.1104/pp.116.1.439
  12. Jiang, Y. and B. Huang. 2000. Effects of drought or heat stress alone and in combination on Kentucky bluegrass. Crop Sci. 40:1358-1362. https://doi.org/10.2135/cropsci2000.4051358x
  13. Kim, K. -H., I. Alam, K. -W. Lee, S. A. Sharmin, S. -S. Kwak, S. Y. Lee and B. -H. Lee. 2011. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses. Biotechnol. Lett. 32:571-576.
  14. Lee, S. -H., N. Ahsan, K. -W. Lee, D. -H. Kim, D. -G. Lee, S. -S. Kwak, S. -Y. Kwon, T. -H. Kim and B. -H. Lee. 2007. Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J. Plant Physiol. 164:1626-1638. https://doi.org/10.1016/j.jplph.2007.01.003
  15. Lee, S. -H., D. -G. Lee, H. -S. Woo and B. -H. Lee. 2004. Development of transgenic tall fescue plants from mature seed-derived callus via Agrobacterium-mediated transformation. Asian-Aust J. Anim. Sci. 17:1390-1394. https://doi.org/10.5713/ajas.2004.1390
  16. Lee, S. -H., D. -G. Lee, H. -S. Woo, K. -W. Lee, D. -H. Kim, S. -S. Kwak, J. -S. Kim, H. Kim, N. Ahsan, M. S. Choi, J. -K. Yang and B. -H. Lee. 2006. Production of transgenic orchardgrass via Agrobacterium-mediated transformation of seed-derived callus tissues. Plant Sci. 171:408-414. https://doi.org/10.1016/j.plantsci.2006.05.006
  17. Lee, K. -W., J. -Y. Cha, K. -H. Kim, Y. -G Kim, B. -H. Lee and S. -H. Lee. 2012a. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnol. Lett. 34: 167-174. https://doi.org/10.1007/s10529-011-0750-1
  18. Lee, K. -W., K. -H. Kim, Y. -G Kim, B. -H. Lee and S. -H. Lee. 2012b. Identification of MsHsp23 gene using annealing control primer system. Acta Physiol. Plant. 34:807-811. https://doi.org/10.1007/s11738-011-0853-2
  19. Leshem, Y. 1992. Plant membranes: A biophysical approach to structure, development and senescence. Kluwer Academic Publishers: 1-266.
  20. Lin, C. C. and C. H. Kao. 2001. Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 160:323-329. https://doi.org/10.1016/S0168-9452(00)00396-4
  21. Neta-Sharir, I., T. Isaacson, S. Lurie and D. Weiss. 2005. Dual role for tomato heat shock protein 21: Protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell. 17:1829-1838. https://doi.org/10.1105/tpc.105.031914
  22. Sato, Y. and S. Yokoya. 2008. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep. 27:329-334. https://doi.org/10.1007/s00299-007-0470-0
  23. Sugino, M., T. Hibino, Y. Tanaka, N. Nii, T. Takabe and T. Takabe. 1999. Overexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica aquires resistance to salt stress in transgenic tobacco plants. Plant Sci. 137:81-88.
  24. Sabehat, A., D. Weiss and S. Lurie. 1996. The correlation between heat shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol. 110:531-537. https://doi.org/10.1104/pp.110.2.531
  25. Soto, A., I. Allona, C. Collada, M. A. Guevara, R. Casado, E. R. Cerezo, C. Aragoncillo and L. Gomez. 1999. Heterologous expression of a plant small heat shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 120:521-528. https://doi.org/10.1104/pp.120.2.521
  26. Saruyama, H. and M. Tanida. 1995. Effect of chilling on activated oxygen-scavenging enzymes in low temperature-sensitive and -tolerant cultivars of rice (Oryza sativa L.). Plant Sci. 109: 105-113. https://doi.org/10.1016/0168-9452(95)04156-O
  27. Wang, W., B. Vinocur and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1-14. https://doi.org/10.1007/s00425-003-1105-5
  28. Yan, L. J., E. S. Christians, L. Liu, X. Xiao, R. S. Sohal and I. J. Benjamin. 2002. Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J. 21:5164-5172. https://doi.org/10.1093/emboj/cdf528

피인용 문헌

  1. (Diptera: Drosophilidae) Under Ultraviolet A Radiation Stress vol.43, pp.5, 2014, https://doi.org/10.1603/EN13240
  2. Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells vol.37, pp.4, 2015, https://doi.org/10.1007/s10529-014-1749-1
  3. Physiological and transcriptional responses of contrasting alfalfa (Medicago sativa L.) varieties to salt stress vol.126, pp.1, 2016, https://doi.org/10.1007/s11240-016-0981-x
  4. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops vol.253, pp.3, 2016, https://doi.org/10.1007/s00709-015-0905-3
  5. Comparative Physiological and Molecular Analyses of Two Contrasting Flue-Cured Tobacco Genotypes under Progressive Drought Stress vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.00827
  6. pp.1724-5575, 2018, https://doi.org/10.1080/11263504.2017.1403392
  7. Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea vol.137, pp.3, 2018, https://doi.org/10.1007/s11120-018-0527-7
  8. Improving the Yield and Nutritional Quality of Forage Crops vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00535
  9. Comparative Physiological and Transcriptional Analyses of Two Contrasting Drought Tolerant Alfalfa Varieties vol.6, pp.None, 2015, https://doi.org/10.3389/fpls.2015.01256
  10. Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots vol.36, pp.3, 2012, https://doi.org/10.5333/kgfs.2016.36.3.243
  11. Protocol for Agrobacterium-mediated transformation of tall fescue and future perspective on the application of genome editing vol.37, pp.2, 2012, https://doi.org/10.5511/plantbiotechnology.20.0309a
  12. Priming Strategies for Benefiting Plant Performance under Toxic Trace Metal Exposure vol.10, pp.4, 2012, https://doi.org/10.3390/plants10040623