DOI QR코드

DOI QR Code

Electrochemical Properties of NiO-YSZ Thin Films on 316 Stainless Steel Bipolar Plates Under a Simulated PEMFC Environment

  • Lee, W.G. (Department of Materials Science and Engineering, Korea University) ;
  • Jang, H. (Department of Materials Science and Engineering, Korea University)
  • Received : 2011.11.16
  • Accepted : 2011.12.30
  • Published : 2012.04.20

Abstract

The corrosion resistance of 316L stainless steel coated with NiO-YSZ (Ni added yttria stabilized zirconia) was examined in a proton exchange membrane fuel cell (PEMFC) environment. The NiO-YSZ coating was carried out using a sol-gel dip coating method, and the corrosion resistance and interfacial contact resistance (ICR) were determined by the composition and morphology of the NiO-YSZ film. The corrosion resistance increased with increasing Ni content in the NiO-YSZ film, but rapid corrosion was observed when the YSZ film contained more than 15 wt % Ni due to surface cracks. The polarization resistance was improved by several orders of magnitude when 316L stainless steel was coated with a 15 wt % NiO-YSZ film compared to bare 316L. The ICR of the NiO-YSZ film was decreased to that of bare 316L when the YSZ film contained 25 wt % NiO, suggesting the possible application of NiO-YSZ coated stainless steel for a bipolar plate.

Keywords

References

  1. Vielstich, W.; Gasteiger, H. A.; Lamm, A. Handbook of Fuel Cells-Fundamentals; Technology and Applications 2003, vol. 3, Chapter 23.
  2. Tawfik, H.; Hung, Y.; Mahajan, D. J. Power Sources 2007, 163, 755-767. https://doi.org/10.1016/j.jpowsour.2006.09.088
  3. Wang, H.; Sweikar, M. A.; Turner, J. A. J. Power Sources 2003, 115, 243-251. https://doi.org/10.1016/S0378-7753(03)00023-5
  4. Wang, H.; Turner, J. A. J. Power Sources 2004, 128, 193-200. https://doi.org/10.1016/j.jpowsour.2003.09.075
  5. Cunningham, B. D.; Huang, J.; Baird, D. G. International Materials Reviews 2007, 52, 1-13. https://doi.org/10.1179/174328006X102556
  6. Davies, D. P.; Adcock, P. L.; Turpin, M.; Rowen, S. J. J. Appl. Electrochem. 2000, 30, 101-105. https://doi.org/10.1023/A:1003831406406
  7. Metha, V.; Cooper, J. S. J. Power Sources 2003, 114, 32-53. https://doi.org/10.1016/S0378-7753(02)00542-6
  8. Wang, H.; Sweikar, M. A.; Turner, J. A. J. Power Sources 2003, 115, 243-251. https://doi.org/10.1016/S0378-7753(03)00023-5
  9. Pathan, H. M.; Min, S. K.; Jung, K. D.; Joo, O. S. Electrochem. Commun. 2006, 8, 273-278. https://doi.org/10.1016/j.elecom.2005.11.022
  10. Cho, K. H.; Lee, W. G.; Lee, S. B.; Jang, H. J. Power Sources 2008, 178, 671-676. https://doi.org/10.1016/j.jpowsour.2007.09.031
  11. Lee, S. B.; Cho, K. H.; Lee, W. G.; Jang, H. J. Power Sources 2009, 187, 318-323. https://doi.org/10.1016/j.jpowsour.2008.11.064
  12. Munoz, M. C.; Gallego, S.; Beltran, J. I. J. Cerda, Surf. Sci. Rep. 2006, 61, 303-344. https://doi.org/10.1016/j.surfrep.2006.03.002
  13. Mennig, M.; Schelle, C.; Duran, A.; Damborenea, J. J.; Guglielmi, M.; Brusatin, G. J. Sol-Gel Sci. Technol. 1998, 13, 717-722. https://doi.org/10.1023/A:1008601224013
  14. Duran, A.; Castro, Y.; Aparicio, M.; Conde, A.; de Damborenea, J. J. Inter. Mate. Rev. 2007, 52, 175-192. https://doi.org/10.1179/174328007X160263
  15. Atik, M.; Kha, C. R.; Delimaneto, P.; Avaca, L. A.; Aegerter, M. A.; Zarzycki, J. J. Mater. Sci. Lett. 1995, 14, 178. https://doi.org/10.1007/BF00318248
  16. Ono, S.; Nishi, Y. J. Am. Ceram. Soc. 2001, 84, 3054-3056. https://doi.org/10.1111/j.1151-2916.2001.tb01139.x
  17. Thomas, H.; Stefan, S.; Bernd, O. Surf. Coat. Technol. 2006, 201, 487-491. https://doi.org/10.1016/j.surfcoat.2005.11.014
  18. Lee, W. G.; Cho, K. H.; Lee, S. B.; Park, S. B.; Jang, H. J. Alloy. Comp. 2009, 474, 268-272. https://doi.org/10.1016/j.jallcom.2008.06.093
  19. Dislich, H. Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics and Specialty Shapes; Klein, L. C., Ed.; Noyes Oublications: Park Ridge, NJ 1988; p 50.
  20. Dimaggio, R.; Fedrizzi, L.; Rossi, S.; Scardi, P. Thin Solid Films 1996, 286, 127. https://doi.org/10.1016/S0040-6090(95)08515-7
  21. Dominguez Crespo, M. A.; Garcia Murillo, A.; Torres-Huerta, A. M.; Yanez-Zamora, C.; de. J. Carrillo-Romo, F. J. Alloy. Comp. 2009, 483, 437-441. https://doi.org/10.1016/j.jallcom.2008.08.086
  22. Dawson, D. K.; Creamer, R. H. Brit. J. Appl. Phys. 1965, 16, 1643-1647.
  23. Srdic, V. V.; Omorjan, R. P. Ceram. Inter. 2001, 27, 859-863. https://doi.org/10.1016/S0272-8842(01)00041-4
  24. Mondal, P.; Klein, A.; Jaegermann, W.; Hahn, H. Solid State Ionics 1999, 118, 331. https://doi.org/10.1016/S0167-2738(98)00452-4
  25. Hirano, M.; Watanabe, S.; Kato, E. J. Am. Ceram. Soc. 1999, 82, 2861.
  26. Rivera, A.; Santamaria, J.; Leon, C. Appl. Phys. Lett. 2001, 78, 610-612. https://doi.org/10.1063/1.1343852
  27. Kosacki, I.; Suzuki, T.; Prtrovsky, V.; Anderson, H. U. Solid State Ionics 2000, 136, 1225. https://doi.org/10.1016/S0167-2738(00)00591-9
  28. Jang, H. J.; Park, C. J.; Kwon, H. S. Electrochimica Acta 2005, 50, 3503-3508. https://doi.org/10.1016/j.electacta.2004.12.027
  29. Zhou, P.; Wu, C. W.; Ma, G. J. J. Power Sources 2006, 159, 1115- 1122. https://doi.org/10.1016/j.jpowsour.2005.12.080
  30. Marinsek, M.; Pejovnik, S.; Macek, J. J. Euro. Ceram. Soc. 2007, 27, 959-964. https://doi.org/10.1016/j.jeurceramsoc.2006.04.165
  31. Esfakur Rahman, A. H. M.; Kim, J. H.; Lee, K. H.; Lee, B. T. Surf. Coat. Technol. 2008, 202, 2182-2188. https://doi.org/10.1016/j.surfcoat.2007.09.012

Cited by

  1. Marine Corrosion Protective Coatings of Hexagonal Boron Nitride Thin Films on Stainless Steel vol.5, pp.10, 2013, https://doi.org/10.1021/am400016y