DOI QR코드

DOI QR Code

Ultrasonography as a Tool for Monitoring the Development and Progression of Cholangiocarcinoma in Opisthorchis viverrini/Dimethylnitrosamine-Induced Hamsters

  • Plengsuriyakarn, Tullayakorn (Thailand Center of Excellence in Drug Discovery and Development (TCEDDD), Thammasat University) ;
  • Eursitthichai, Veerachai (Thailand Center of Excellence in Drug Discovery and Development (TCEDDD), Thammasat University) ;
  • Labbunruang, Nipawan (Thailand Center of Excellence in Drug Discovery and Development (TCEDDD), Thammasat University) ;
  • Na-Bangchang, Kesara (Thailand Center of Excellence in Drug Discovery and Development (TCEDDD), Thammasat University) ;
  • Tesana, Smarn (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Aumarm, Waraporn (Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University) ;
  • Pongpradit, Ananya (Department of Companion Animals Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University) ;
  • Viyanant, Vithoon (Thailand Center of Excellence in Drug Discovery and Development (TCEDDD), Thammasat University)
  • Published : 2012.01.31

Abstract

Cholangiocarcinoma (CCA) is the most common cancer in northeastern Thailand. At present, effective diagnosis of CCA either in humans or animals is not available. Monitoring the development and progression of CCA in animal models is essential for research and development of new promising chemotherapeutics. Ultrasonography has been widely used for screening of bile duct obstruction in CCA patients. In this study, we preliminarily investigated the applicability of ultrasonography to monitor the development and progression of CCA in Syrian golden hamsters (n=8) induced by Opisthorchis viverrini (OV)/dimethylnitrosamine (DMN) administration. Ultrasonography and histopathological examination of hamsters was performed at week 0, 20, 24 and 28 of OV infection or at the start of water/Tween-80 administration to controls. The ultrasonographic images of liver parenchyma and gallbladders of OV/DMN-induced CCA hamsters showed sediments in gallbladder, thickening of gallbladder wall, and hypoechogenicity of liver parenchyma cells. The ultrasonographic images of liver tissues were found to correlate well with histopathological examination. Although ultrasonography does not directly detect the occurrence of CCA, it reflects the thickening of bile ducts and abnormality of liver tissues. It may be applied as a reliable tool for monitoring the development and progression of CCA in animal models in research and development of new promising chemotherapeutics for CCA.

Keywords

References

  1. Bhamarapravati N, Thamavit W (1978). Animal studies on liver fluke infestation, dimethylnitrosamine, and bile duct carcinoma. Lancet, 1, 206-7. https://doi.org/10.1016/S0140-6736(02)95526-1
  2. Bjornsson E, Kilander A, Olsson R (1999). CA 19-9 and CEA are unreliable markers for cholangiocarcinoma in patients with primary sclerosing cholangitis. Liver, 19, 501-8. https://doi.org/10.1111/j.1478-3231.1999.tb00083.x
  3. Bloom CM, Langer B, Wilson SR (1999). Role of US in the detection, characterization, and staging of cholangiocarcinoma. Radiographics, 19, 1199-218. https://doi.org/10.1148/radiographics.19.5.g99se081199
  4. Chaimuangraj S, Thamavit W, Tsuda H, Moore MA (2003). Experimental investigation of opisthorchiasis-associated cholangiocarcinoma induction in the Syrian hamster - pointers for control of the human disease. Asian Pac J Cancer Prev, 4, 87-93.
  5. Choi JY, Kim MJ, Lee JM, et al (2008). Hilar cholangiocarcinoma: role of preoperative imaging with sonography, MDCT, MRI, and direct cholangiography. AJR Am J Roentgenol, 191, 1448-57. https://doi.org/10.2214/AJR.07.3992
  6. Colli A, Cocciolo M, Mumoli N, et al (1998). Peripheral intrahepatic cholangiocarcinoma: ultrasound findings and differential diagnosis from hepatocellular carcinoma. Eur J Ultrasound, 7, 93-9. https://doi.org/10.1016/S0929-8266(98)00012-3
  7. Fava G, Lorenzini I (2012). Molecular pathogenesis of cholangiocarcinoma. Int J Hepatol, ?, ?-?.
  8. Freeny PC (1999). Computed tomography in the diagnosis and staging of cholangiocarcinoma and pancreatic carcinoma. Ann Oncol, 10, 12-7.
  9. Karstrup S (1988). Ultrasound diagnosis of cholangiocarcinoma at the confluence of the hepatic ducts (Klatskin tumours). Br J Radiol, 61, 987-90. https://doi.org/10.1259/0007-1285-61-731-987
  10. Mairiang E, Elkins DB, Mairiang P, et al (1992). Relationship between intensity of Opisthorchis viverrini infection and hepatobiliary disease detected by ultrasonography. J Gastroenterol Hepatol, 7, 17-21. https://doi.org/10.1111/j.1440-1746.1992.tb00928.x
  11. Mairiang E, Laha T, Bethony JM, et al (2011). Ultrasonography assessment of hepatobiliary abnormalities in 3359 subjects with Opisthorchis viverrini infection in endemic areas of Thailand. Parasitol Int, ?, ?-?.
  12. Manfredi R, Barbaro B, Masselli G, Vecchioli A, Marano P (2004). Magnetic resonance imaging of cholangiocarcinoma. Semin Liver Dis, 24, 155-64. https://doi.org/10.1055/s-2004-828892
  13. Minami Y, Kudo M (2010). Hepatic malignancies: Correlation between sonographic findings and pathological features. World J Radiol, 2, 249-56. https://doi.org/10.4329/wjr.v2.i7.249
  14. Nakamura K, Takagi S, Sasaki N, et al (2010). Contrast-enhanced ultrasonography for characterization of canine focal liver lesions. Vet Radiol Ultrasound, 51, 79-85. https://doi.org/10.1111/j.1740-8261.2009.01627.x
  15. Nesbit GM, Johnson CD, James EM, et al (1988). Cholangiocarcinoma: diagnosis and evaluation of resectability by CT and sonography as procedures complementary to cholangiography. AJR Am J Roentgenol, 151, 933-8. https://doi.org/10.2214/ajr.151.5.933
  16. Pairojkul C, Shirai T, Hirohashi S, et al (1991). Multistage carcinogenesis of liver-fluke-associated cholangiocarcinoma in Thailand. Princess Takamatsu Symp, 22, 77-86.
  17. Ramage JK, Donaghy A, Farrant JM, Iorns R, Williams R (1995). Serum tumor markers for the diagnosis of cholangiocarcinoma in primary sclerosing cholangitis. Gastroenterology, 108, 865-9. https://doi.org/10.1016/0016-5085(95)90462-X
  18. Silsirivanit A, Araki N, Wongkham C, et al (2011). A novel serum carbohydrate marker on mucin 5AC: values for diagnostic and prognostic indicators for cholangiocarcinoma. Cancer, 117, 3393-403. https://doi.org/10.1002/cncr.25912
  19. Sinakos E, Saenger AK, Keach J, Kim WR, Lindor KD (2011). Many patients with primary sclerosing cholangitis and increased serum levels of carbohydrate antigen 19-9 do not have cholangiocarcinoma. Clin Gastroenterol Hepatol, 9, 434-9. https://doi.org/10.1016/j.cgh.2011.02.007
  20. Sripa B, Kaewkes S (2002). Gall bladder and extrahepatic bile duct changes in Opisthorchis viverrini-infected hamsters. Acta Trop, 83, 29-36. https://doi.org/10.1016/S0001-706X(02)00052-9
  21. Sripa B, Bethony JM, Sithithaworn P, et al (2011). Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop, 120, 158-68. https://doi.org/10.1016/j.actatropica.2010.07.006
  22. Sripa B, Kaewkes S, Sithithaworn P (2007). Liver fluke induces cholangiocarcinoma. PLoS Med, 4, 201. https://doi.org/10.1371/journal.pmed.0040201
  23. Tao LY, Cai L, He XD, Liu W, Qu Q (2010). Comparison of serum tumor markers for intrahepatic cholangiocarcinoma and hepatocellular carcinoma. Am Surg, 76, 1210-3.
  24. Thamavit W, Bhamarapravati N, Sahaphong S, Vajrasthira S, Angsubhakorn S (1978). Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverriniinfected Syrian golden hamsters. Cancer Res, 38, 4634-9.
  25. Tillich M, Mischinger HJ, Preisegger KH, Rabl H, Szolar DH (1998). Multiphasic helical CT in diagnosis and staging of hilar cholangiocarcinoma. AJR Am J Roentgenol, 171, 651-8. https://doi.org/10.2214/ajr.171.3.9725291
  26. Ustundag Y, Bayraktar Y (2008). Cholangiocarcinoma: a compact review of the literature. World J Gastroenterol, 14, 6458-66. https://doi.org/10.3748/wjg.14.6458
  27. Vanderveen KA, Hussain HK (2004). Magnetic resonance imaging of cholangiocarcinoma. Cancer Imaging, 4, 104-15. https://doi.org/10.1102/1470-7330.2004.0018
  28. Xu H, et al. 2008. Elevation of serum KL-6 mucin levels in patients with cholangiocarcinoma. Hepatogastroenterology, 55, 2000-4.
  29. Yasutake M, Sasaki H, Fujimatsu M, et al (1988). Metastatic cholangiocarcinoma to the right atrial appendage detected by magnetic resonance imaging. Am Heart J, 116, 566-8. https://doi.org/10.1016/0002-8703(88)90638-2
  30. Zografos GN, Farfaras A, Zagouri F, Chrysikos D, Karaliotas K, (2011). Cholangiocarcinoma: principles and current trends. Hepatobiliary Pancreat Dis Int, 10, 10-20. https://doi.org/10.1016/S1499-3872(11)60001-5

Cited by

  1. Animal models of cholangiocarcinoma vol.29, pp.3, 2013, https://doi.org/10.1097/MOG.0b013e32835d6a3e
  2. Traditional Herbal Medicine for the Control of Tropical Diseases vol.42, pp.2SUPPLEMENT, 2014, https://doi.org/10.2149/tmh.2014-S01
  3. In-vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study vol.27, pp.4, 2017, https://doi.org/10.1007/s00330-016-4510-4