References
- R. Kress, "Inverse scattering from an open arc," Math. Meth. Appl. Sci., vol. 18, pp. 267-293, 1995. https://doi.org/10.1002/mma.1670180403
- H. Ammari, H. Kang, H. Lee, and W. -K. Park, "Asymptotic imaging of perfectly conducting cracks," SIAM J. Sci. Comput., vol. 32, pp. 894-922, 2010. https://doi.org/10.1137/090749013
- W. -K. Park, D. Lesselier, "Electromagnetic MUSICtype imaging of perfectly conducting, arc-like cracks at single frequency," J. Comput. Phys., vol. 228, pp. 8093-8111, 2009. https://doi.org/10.1016/j.jcp.2009.07.026
- F. Cakoni, D. Colton, "The linear sampling method for cracks," Inverse Problems, vol. 19, pp. 279-295, 2003. https://doi.org/10.1088/0266-5611/19/2/303
- A. Kirsch, S. Ritter, "A linear sampling method for inverse scattering from an open arc," Inverse Problems, vol. 16, pp. 89-105, 2000. https://doi.org/10.1088/0266-5611/16/1/308
- H. Ammari, J. Garnier, H. Kang, W. -K. Park, and K. Solna, "Imaging schemes for perfectly conducting cracks," SIAM J. Appl. Math., vol. 71, pp. 68-91, 2011. https://doi.org/10.1137/100800130
- S. Hou, K. Huang, K. Solna, and H. Zhao, "Phase and space coherent direct imaging method," J. Acoust. Soc. Am., vol. 125, pp. 227-238, 2009. https://doi.org/10.1121/1.3035835
- H. Ammari, J. Garnier, V. Jugnon, and H. Kang, "Stability and resolution analysis for a topological derivative based imaging functional," SIAM J. Control. Optim., vol. 50, pp. 48-76, 2012. https://doi.org/10.1137/100812501
- W. -K. Park, "On the imaging of thin dielectric inclusions via topological derivative concept," Prog. Electromagn. Res., vol. 110, pp. 237-252, 2010. https://doi.org/10.2528/PIER10101305
- W. -K. Park, "Topological derivative strategy for onestep iteration imaging of arbitrary shaped thin, curve- like electromagnetic inclusions," J. Comput. Phys., vol. 231, pp. 1426-1439, 2012. https://doi.org/10.1016/j.jcp.2011.10.014
- Y. -K. Ma, P. -S. Kim, and W. -K. Park, "Analysis of topological derivative function for a fast electromagnetic imaging of perfectly conducing cracks," Prog. Electromagn. Res., vol. 122, pp. 311-325, 2012. https://doi.org/10.2528/PIER11092901
- R. Griesmaier, "Multi-frequency orthogonally sampling for inverse obstacle scattering problems," Inverse Problems, vol. 27, 085005, 2011. https://doi.org/10.1088/0266-5611/27/8/085005
- R. Kress, P. Serranho, "A hybrid method for twodimensional crack reconstruction," Inverse Problems, vol. 21, pp. 773-784, 2005. https://doi.org/10.1088/0266-5611/21/2/020
Cited by
- Analysis of Weighted Multifrequency MUSIC-Type Algorithm for Imaging of Arc-Like, Perfectly Conducting Cracks vol.2013, 2013, https://doi.org/10.1155/2013/461251
- A study on the topological derivative-based imaging of thin electromagnetic inhomogeneities in limited-aperture problems vol.30, pp.10, 2014, https://doi.org/10.1088/0266-5611/30/10/105004
- MUSIC-type imaging of perfectly conducting cracks in limited-view inverse scattering problems vol.240, 2014, https://doi.org/10.1016/j.amc.2014.04.097
- Analysis of a multi-frequency electromagnetic imaging functional for thin, crack-like electromagnetic inclusions vol.77, 2014, https://doi.org/10.1016/j.apnum.2013.11.001
- Shape Reconstruction of Thin Electromagnetic Inclusions via Boundary Measurements: Level-Set Method Combined with the Topological Derivative vol.2013, 2013, https://doi.org/10.1155/2013/125909
- Analysis of multi-frequency subspace migration weighted by natural logarithmic function for fast imaging of two-dimensional thin, arc-like electromagnetic inhomogeneities vol.68, pp.12, 2014, https://doi.org/10.1016/j.camwa.2014.10.005