DOI QR코드

DOI QR Code

Method for the Measurement of Dissolved Oxygen in a Cell Culture Microchannel Using Oxygen-Sensitive Luminescence

산소 민감 발광 염료를 이용한 마이크로 채널 내에서 배양되는 세포 주변의 산소 농도 측정

  • Lee, Seung-Youl (Dept. of Mechanical System Engineering,Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic Univ.) ;
  • Jin, Song-Wan (Dept. of Mechanical System Engineering, Korea Polytechnic Univ.)
  • 이승열 (한국산업기술대학교 지식기반에너지 대학원) ;
  • 진송완 (한국산업기술대학교 기계공학과)
  • Received : 2011.12.30
  • Accepted : 2012.02.20
  • Published : 2012.05.01

Abstract

In this study, we used an $O_2$-sensitive luminescent dye to measure the $O_2$ concentration of culture media around HeLa cells cultured in a microchannel. $[Ru(bpy)_3]^{2+}$, which dissolves easily in water and which has no phototoxic effect, was used as the $O_2$-sensitive dye. The ratiometric sensing method was applied by introducing calcein as the $O_2$-insensitive dye, in order to overcome the disadvantages of intensity-based sensing. By performing calibration with an amperometric $O_2$ sensor, we could calculate the exact concentration of $O_2$ in the culture media. We applied this technique to measure the $O_2$ concentration around the cultured cells in the microchannel. As expected, the $O_2$ concentration gradually decreased as the cells moved farther away from the channel. This method is expected to be applicable to the investigation of hypoxia, which occurs commonly in scaffolds.

본 논문에서는 산소 민감 발광 염료를 이용하여 마이크로 채널 내에서 세포가 배양되고 있을 때 산소농도를 측정하였다. 현재까지 알려진 여러 산소 민감 발광 염료 중 본 논문에서는 물에 잘 녹으며 장 시간 동안 사용하여도 독성이 없는 것으로 알려진 $[Ru(bpy)_3]^{2+}$를 사용하였으며 이와 더불어 산소 민감 염료 측정법의 단점을 보완하기 위하여 칼세인 염료를 이용하여 두 염료의 밝기 비율을 구하여 농도를 측정하였다. SCOMS 카메라와 마이크로 채널을 이용하여 캘리브레이션을 실시하고 농도와 밝기와의 관계를 구하였으며 이 관계를 이용하여 세포가 배양되는 조건에서의 배양액의 산소농도를 측정하였다. 실험 결과 채널입구에서 점점 멀어질수록 마이크로 채널 내에서 산소농도는 점점 낮아진다는 것을 관찰 할 수 있었다.

Keywords

References

  1. Jurek, W. D., 2001, "Interaction of Oxygen-Sensitive Luminescent Probes $Ru(phen)_3^{2+}$ and $Ru(bipy)_3^{2+}$ with Animal and Plant Cells in Vitro: Mechanism of Phototoxicity and Conditions for Non-Invasive Oxygen Measurements," Journal of Photo Chemistry and Photobiology B: Biology,Vol. 65, No.2-3, pp. 136-144. https://doi.org/10.1016/S1011-1344(01)00257-3
  2. Amao, Y. and Okura, I., 2003, "Optical Oxygen Sensing Materials: Chemisorption Film of Ruthenium(II) Polypyridyl Complexes Attached to Anionic Polymer," Sensors and Actuators B: Chemical, Vol. 88, No. 2, pp. 162-167. https://doi.org/10.1016/S0925-4005(02)00320-9
  3. Zhang, P., Guo, J., Pang, W. and Wang, Y., 2002, "Incorporation of Luminescent Tris (Bipyridine) Ruthenium(II) Complex in Mesoporous Silica Spheres and Their Spectroscopic and Oxygen-Sensing Properties," Materials Letters, Vol. 53, No. 6, pp. 400-405. https://doi.org/10.1016/S0167-577X(01)00514-6
  4. Wilson, D. F. and Cerniglia, G. J., 1992, "Localization of Tumors and Evaluation of Their State of Oxygenation by Phosphorescence Imaging," Cancer Research, Vol. 52, No. 14, pp. 3988-3993.
  5. Lam, R. H. W., Kim, M.-C. and Thorsen, T., 2009, "Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator," Analytical Chemistry, Vol. 81, No. 14, pp. 5918-5924. https://doi.org/10.1021/ac9006864
  6. Nock, V., Blaikie, R. J. and David, T., 2008, "Patterning, Integration and Characterisation of Polymer Optical Oxygen Sensors for Microfluidic Devices," Lab on a Chip, Vol. 8, No. 8, pp. 1300-1037. https://doi.org/10.1039/b801879k
  7. Chang-Yen, D. A., Badardeen, A. and Gale, B. K., 2007, "Spin-Assembled Nano Films for Gaseous Oxygen Sensing," Sens. Actuators, B, Vol. 120, No. 2, pp. 426-433. https://doi.org/10.1016/j.snb.2006.02.045
  8. O'Donovan, C., Hynes, J., Papkovsky, D. B. and Yashunski, D., 2005, "Phosphorescent Oxygen-Sensitive Materials for Biological Applications," Journal of Materials Chemistry, Vol. 15, No. 27-28, pp. 2948-2951.
  9. Hartmann, P., Holst, G., Lubbers, D. W. and Ziegler, W., 1997, "Oxygen Flux Fluorescence Lifetime Imaging," Sens. Actuators B Chem.,Vol. 38, No. 1-3, pp. 110-115. https://doi.org/10.1016/S0925-4005(97)80179-7
  10. Park, E. J., Kennedy, R. T, Kopelman, R., Reid, K. R. and Tang, W., 2005, "Ratio Metric Fiber Optic Sensors for the Detection of Inter- and Intra-Cellular Dissolved Oxygen," Journal of Materials Chemistry, Vol. 15, No. 27-28, pp. 2913-2919. https://doi.org/10.1039/b502981c

Cited by

  1. Ratiometric Dissolved Oxygen Sensors Based on Ruthenium Complex Doped with Silver Nanoparticles vol.17, pp.3, 2017, https://doi.org/10.3390/s17030548