DOI QR코드

DOI QR Code

Molecular evolution of cpDNA trnL-F region in Korean Thalictrum L. (Ranunculaceae) and its phylogenetic relationships: Impacts of indel events

한국산 꿩의다리속(미나리아재비과)의 cpDNA trnL-F 지역의 분자진화와 유연관계: Indel events의 영향

  • Received : 2012.03.06
  • Accepted : 2012.03.14
  • Published : 2012.03.31

Abstract

The trnL-F region islocated in the large single-copy region of the chloroplast genome. It consists of the trnL gene, the trnL intron, and the trnL-F IGS. Molecular evolution and phylogenetic relationships in Korean Thalictrum L. were investigated using data from the cpDNA trnL-F region. Bayesian and parsimony analyses of the data set with the gap characteristics recovered well-resolved trees that are topologically similar, with clades supported by some indels evolution. Indel events of cpDNA trnL-F in Korean Thalictrum were interpreted as phylogenetically informative characteristics. Sect. Physocarpum (excluding T. osmorhizoides) was an early-diverging group with in the genus and the remaining section formed strongly supported clades. Korean Thalictrum has various evolutionary patterns, such as the spatial distribution of the nucleotide diversity and transversion-type base substitutions in the trnL-F region.

trnL-F 지역은 엽록체 게놈 large single-copy 지역에 위치하며, trnL gene, trnL intron, trnL-F IGS로 구성된다. 본 연구는 한국산 꿩의다리속 내에서 trnL-F 지역의 분자진화와 유연관계를 분석하였다. 갭형질을 이용한 자료의 베이시안과 파시모니 분석에서 몇몇 indels evolution는 분계조를 지지하여 해상력이 좋은 계통수가 나타났다. 한국산 꿩의다리속 내에 cpDNA trnL-F 지역의 indel events는 계통학적으로 유용한 정보를 가지고 있는 것으로 판단된다. 산꿩의다리절(그늘꿩의다리 제외)은 속내에서 가장 먼저 분기한 것으로 나타났고, 나머지 절은 강하게 분계조를 형성하며 분기하였다. 한국산 꿩의다리속 내에 trnL-F 지역은 뉴클레오티드의 다양한 공간적 분포 변이와 주로 transversion에 따른 염기치환 등 다양한 진화적 패턴을 가지고 있었다.

Keywords

References

  1. Allen, G. C., M. A. Flores-Vergara, S. Krasynanski, S. Kumar and W. F. Thompson. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat. Protoc. 1: 2320-2325. https://doi.org/10.1038/nprot.2006.384
  2. Bakker, F. T., A. Culham, R. Gomez-Martinez, J. Carvalho, J. Compton, R. Dawtrey and M. Gibby. 2000. Patterns of nucleotide substitution in angiosperm cpDNA trnL (UAA)-trnF (GAA) regions. Mol. Biol. Evol. 17: 1146-1155. https://doi.org/10.1093/oxfordjournals.molbev.a026397
  3. Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27: 573-580. https://doi.org/10.1093/nar/27.2.573
  4. Cech, T. R. 1990. Self-splicing of group I introns. Annu. Rev. Biochem. 59: 543-568. https://doi.org/10.1146/annurev.bi.59.070190.002551
  5. Clegg, M. T., G. H. Learn and E. M. Golenberg. 1991. Molecular evolution of chloroplast DNA. In Evolution at the molecular level. Selander, R. K., A. G. Clark and T. S. Whittman (eds). Sinauer Associates, Sunderland, Massachusetts. Pp. 135-149.
  6. Drummond, A. J., B. Ashton, S. Buxton, M. Cheung, A. Cooper, J. Heled, M. Kearse, R. Moir, S. Stones-Havas, S. Sturrock, T. Thierer and A. Wilson. 2011. Geneious v5.5, Available from http://www.geneious.com.
  7. Farris, J. S. 1989. The retention index and the rescaled consistency index. Cladistics 5: 417-419. https://doi.org/10.1111/j.1096-0031.1989.tb00573.x
  8. Farris, J. S., V. A. Albert, M. Källersjö, D. Lipscomb and A. G. Kluge. 1996. Parsimony jackknifing outperforms neighborjoining. Cladistics 12: 99-124. https://doi.org/10.1111/j.1096-0031.1996.tb00196.x
  9. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
  10. Fu, D. Z. 1990. Phylogenetic considerations on the subfamily Thalictroideae (Ranunculaceae). Cathaya 2: 181-190.
  11. Fujii, N. 2007. Chloroplast DNA phylogeography of Pedicularis ser. Gloriosae (Orobanchaceae) in Japan. J. Plant Res. 120: 491-500. https://doi.org/10.1007/s10265-007-0083-2
  12. Golenberg, E. M., M. T. Clegg, M. L. Durbin, J. Doebley and D. P. Ma. 1993. Evolution of a non-coding region of the chloroplast genome. Mol. Phylogenet. Evol. 2: 52-64. https://doi.org/10.1006/mpev.1993.1006
  13. Kelchner, S. A. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann. Mo. Bot. Gard. 87: 482-498. https://doi.org/10.2307/2666142
  14. Kluge, A. G. and J. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32. https://doi.org/10.2307/2412407
  15. Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson and D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  16. Lewis, P. O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913-925. https://doi.org/10.1080/106351501753462876
  17. Li, W. H. 1997. Molecular Evolution. Sinauer Associates, Sunderland, Massachusetts.
  18. Librado, P. and J. Rozas. 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  19. Maddison, D. R. and W. P. Maddison. 2005. MacClade 4. Sinauer Associates, Sunderland, Massachusetts.
  20. Morton, B. R. 1995. Neighbouring base composition and transversion/ transition bias in a comparison of rice and maize chloroplast noncoding regions. Proc. Natl. Acad. Sci. USA 92: 9717-9721. https://doi.org/10.1073/pnas.92.21.9717
  21. Muller, K. 2005. SeqState - primer design and sequence statistics for phylogenetic DNA data sets. Appl. Bioinformatics 4: 65-69. https://doi.org/10.2165/00822942-200504010-00008
  22. Muller, K. 2006. Incorporating information from length-mutational events into phylogenetic analysis. Mol. Biol. Evol. 38: 667-676.
  23. Palmer, J. D. 1987. Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am. Nat. 130: S6-S29. https://doi.org/10.1086/284689
  24. Palmer, J. D., R. K. Jansen, H. Michaels, J. Manhart and M. W. Chase. 1988. Phylogenetic analysis of chloroplast DNA variation. Ann. Mo. Bot. Gard. 75: 1180-1206. https://doi.org/10.2307/2399279
  25. Park, S. and S. J. Park. 2009. Systematics of Korean Thalictrum L. based on a morphological cladistic analysis. Korean J. Pl. Taxon. 39: 89-99 (in Korean).
  26. Posada, D. 2008. jModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 25: 1253-1256. https://doi.org/10.1093/molbev/msn083
  27. Quandt, D., K. Müller, M. Stech, J. P. Frahm, W. Frey, K. W. Hilu and T. Borsch. 2004. Molecular evolution of the chloroplast trnL-F region in land plants. Monogr Syst. Bot. Mo. Bot. Gard. 98: 13-37.
  28. Rambaut, A. and A. J. Drummond. 2009. Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer (Accessed February 2010).
  29. Ronquist, F. and J. P. Huelsenbeck. 2003 MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  30. Shaw, J., E. B. Lickey, J. T. Beck, S. B. Farmer, W. Liu, J. Miller, K. C. Siripun, C. T. Winder, E. E. Schilling and R. L. Small. 2005. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am. J. Bot. 92:142-166. https://doi.org/10.3732/ajb.92.1.142
  31. Simmons, M. P. and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49: 369-381. https://doi.org/10.1093/sysbio/49.2.369
  32. Simmons, M., K. Müller and A. Norton. 2007. The relative performance of indel-coding methods in simulations. Mol. Biol. Evol. 44: 724-740.
  33. Soltis, D. E., P. E. Soltis and B. G. Milligan. 1992. Intraspecific chlroplast DNA variation: Systematic and phylogenetic implications. In Molecular systematics of plants. Soltis, P. S., D. E. Soltis and J. J. Doyle (eds). Chapman and Hall, New York. Pp. 117-150.
  34. Sun, H., W. McLewin and M. F. Fay. 2001. Molecular phylogeny of Helleborus (Ranunculaceae), with an emphasis on the East Asian-Mediterranean disjunction. Taxon 50: 1001-1018. https://doi.org/10.2307/1224717
  35. Swofford, D. L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
  36. Taberlet, P., E. Coissac, F. Pompanon, L. Gielly, C. Miquel, A. Valentini, T. Vermat, G. Corthier, C. Brochmann and E. Willerslev. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35: e14. https://doi.org/10.1093/nar/gkl938
  37. Taberlet, P., L. Gielly, G. Pautou and J. Bouvet. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17: 1105-1109. https://doi.org/10.1007/BF00037152
  38. Tamura, M. 1995. Ranunculaceae. In Die Naturlichen Pflanzenfamilien, Vol 17 a IV. Hiepko, P. (eds). Duncker & Humblot, Berlin, Germany. Pp. 223-497.
  39. Wolfe, K. H., W. H. Li and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84: 9054-9058. https://doi.org/10.1073/pnas.84.24.9054
  40. Wyman, S. K., R. K. Jansen and J. L. Boore. 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. https://doi.org/10.1093/bioinformatics/bth352

Cited by

  1. 범용성 DNA 바코드 분석 기반 한국산 천남성속(Arisaema) 식물의 분자계통학적 연구 vol.31, pp.1, 2012, https://doi.org/10.7732/kjpr.2018.31.1.037