DOI QR코드

DOI QR Code

Asymmetry Ratio and Emission Properties of YVO4:Eu3+ Red Phosphors Synthesized by Solid-state Reaction Method

고상법으로 합성한 YVO4:Eu3+ 적색 형광체의 비대칭비와 발광 특성

  • Received : 2012.03.03
  • Accepted : 2012.03.22
  • Published : 2012.04.01

Abstract

$Y_{1-x}VO_4:Eu_x^{3+}$ red phosphors were synthesized with changing the mol ratios of $Eu^{3+}$ ions by using the solid-state reaction method. The crystalline structure of phosphors was found to be a tetragonal system with the maximum diffraction intensity at $25.02^{\circ}$. The grain particles showed the truncated hexagonal patterns with a very homogeneous size distribution at 0.05 mol of $Eu^{3+}$ ion. The excitation spectra of the phosphor ceramics were composed of a broad band centered at 303 nm and weak narrow multilines peaked in the range of 360-420 nm. The dominant emission spectrum was the strong red emission centered at 619 nm due to the $^5D_0{\rightarrow}^7F_2$ electric dipole transition. The experimental results suggest that the optimum doping mol ratio of $Eu^{3+}$ ions for preparing the red phosphors is 0.10 mol with the asymmetry ratio of 5.21.

Keywords

References

  1. D. S. Jo, Y. Y. Luo, K. Senthil, T. Masaki, and D. H. Yoon, Opt. Mater., 33, 1190 (2011). https://doi.org/10.1016/j.optmat.2011.02.007
  2. X. Yang, X. Dong, J. Wang, and G. Liu, Mater. Lett., 63, 629 (2009). https://doi.org/10.1016/j.matlet.2008.12.004
  3. W. Di, X. Zhao, S. Lu, X. Wang, and H. Zhao, J. Solid State Chem. 180, 2478 (2007). https://doi.org/10.1016/j.jssc.2007.06.025
  4. X. Su, B. Yan, and H. Huang, J. Alloys Compd., 399, 251 (2005). https://doi.org/10.1016/j.jallcom.2005.03.059
  5. W. Jadwisienczak, K. Wisniewski, M. Spencer, T. Thomas, and D. Ingram, Radiat. Meas., 45, 500 (2010). https://doi.org/10.1016/j.radmeas.2009.12.016
  6. V. Natarajan, A. R. Dhobale, and C. H. Lu, J. Lumin., 129, 290 (2009). https://doi.org/10.1016/j.jlumin.2008.10.001
  7. J. H. Lee, B. C. Ahn, S. B. Jun, and D. K. Lee, J. Korean Oil Chemists' Soc., 23, 207 (2006).
  8. A. A. Kaminskii, K. Ueda, H. J. Eichler, Y. Kuwano, H. Kouta, S. N. Bagayev, T. H. Chyba, J. C. Barnes, T. Murai, and J. Lu, Laser Phys., 11, 1124 (2001).
  9. W. J. Park, M. K. Jung, and D. H. Yoon, Sensor. Actuat., B126, 324 (2007).
  10. X. Xiao, G. Lu, S. Shen, D. Mao, Y. Guo, and Y. Wang, Mater. Sci. Eng., B176, 72 (2011).
  11. H. Y. Chen, M. H. Weng, S. J. Chang, and R. Y. Yang, Ceram. Int., 38, 125 (2012). https://doi.org/10.1016/j.ceramint.2011.06.044
  12. D. W. Kim and S. S. Yi, Sae Mulli, 56, 518 (2008).
  13. F. W. Kang, Y. H. Hu, H. Y. Wu, and G. F. Ju, Chin. Phys. Lett. 28, 107201 (2011). https://doi.org/10.1088/0256-307X/28/10/107201
  14. L. S. Wang, X. M. Liu, Z. W. Quan, D. Y. Kong, J. Yang, and J. Lin, J. Lumin. 122-123, 36 (2007). https://doi.org/10.1016/j.jlumin.2006.01.079
  15. J. Zhang, Y. Wang, Z. Zhang, Z. Wang, and B. Liu, Mater. Lett., 62, 202 (2008). https://doi.org/10.1016/j.matlet.2007.04.101
  16. M. Nazarov and D. Y. Noh, J. Rare Earth., 28, 1 (2010).