DOI QR코드

DOI QR Code

Effects of the Duration of Highly Intensive Exercise on Lymphocyte Cell Death in Rats

고강도운동 지속시간이 rat의 림프구 세포사에 미치는 영향

  • Kim, Hyeong-Soo (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Hyun, Kyung-Yae (Department of Clinical Laboratory Science, College of Nursing & Health Sciences, Dong-Eui University)
  • 김형수 (부산가톨릭대학교 임상병리학과) ;
  • 현경예 (동의대학교 임상병리학과)
  • Received : 2011.08.24
  • Accepted : 2011.11.08
  • Published : 2012.03.30

Abstract

The time-dependent effects of highly intensive exercise on the hematological properties of leukocytes, as well as $CD4^+$ and $CD8^+$ level changes as T-lymphocyte activation subsets and the cell death of lymphocytes in rats were studied in this research. Twenty, 60, and 120 min of highly intensive exercise was performed daily for 8 weeks. Total leukocyte counts in the blood of rats exercising for 20 min were elevated; they then decreased to less than the level of the control group up to 120 min. The patterns of lymphocyte level changes were directly influenced by exercise duration and the extents of alteration were similar to the total leukocytes counts. The levels of $CD4^+$ and $CD8^+$ in the blood of the exercising rats were not statistically different even when the exercise was continued for 120 min; thus, the exercise did not affect T-lymphocyte activation. Early- and late-stage lymphocyte apoptosis was not affected by the length of exercise, except that late-phase apoptosis was slightly increased at 120 min, suggesting that aging processes for lymphocyte apoptosis might be stimulated at that time. As the exercise time became longer, stimulated necrosis of lymphocytes was observed, so damage in lymphocytes and a potential loss of immunity might be presumed. The current observation suggests that long-term, highly intensive exercise might result in a loss of immunity that could be due to the damage of lymphocytes in terms of both their numbers and inflammation-related functions. The results suggest that under highly intensive exercise conditions, more than 20 min of exercise should not be suggested for health care purposes.

고강도운동의 지속시간이 백혈구 조성과 T-림프구 활성 보조인자로서의 $CD4^+$$CD8^+$수준의 변화 그리고 림프수의 세포사에 미치는 영향을 조사하기 위해 쥐실험을 하였다. 고강도 운동을 매일 20, 60, 그리고 120분 동안 8주간 실시하였다. 혈액내의 총 백혈구 수는 20분간 운동을 했을 때 상승하였고 이것은 다시 120분 까지 대조군의 수준 이하로 감소하였다. 림프구의 수준변화 패턴 역시 운동시간의 영향을 받았으며 그 변화 정도는 총 백혈구의 그것과 유사하였다. 고강도운동을 실시한 쥐의 혈액 내 $CD4^+$$CD8^+$의 수준은 운동시간이 120분간 지속될 때까지 변화가 없었기 때문에 T-림프구의 활성에는 영향을 주지 않는 것으로 보인다. 거의 모든 초기단계 및 후기 단계의 림프구의 세포자멸사는 운동시간에 영향을 받지 않았으나 120분간 운동한 그룹에서 후기단계의 림프구 자멸사 수준이 증가되는 것으로 보아 이때 세포노화의 촉진이 일어났으리라 사료된다. 운동시간이 길어질수록 림프구의 괴사 수준이 증가되는 것을 확인 하였고 이에 따라 고강도운동에 의한 림프구 손상과 면역력 저하의 가능성이 예상된다. 본 연구에서 장시간 동안의 고강도 운동은 림프구의 염증관련 기능과 세포 수에 있어서의 손상 등을 일으켜 면역력의 저하를 초래할 수 있다고 보며 따라서 적어도 본 연구조건에 한해서 20분 이상의 고강도운동은 건강유지 차원에서 바람직하지 않다고 판단된다.

Keywords

References

  1. Armstrong, E. J., D. A. Morrow, and M. S. Sabatine. 2006. Inflammatory biomarkers in acute coronary syndromes: part II: acute-phase reactants and biomarkers of endothelial cell activation. Circulation 113, e152-e155. https://doi.org/10.1161/CIRCULATIONAHA.105.595538
  2. Baum, M., M. Muller-Steinhardt, H. Liesen, and H. Kirchner. 1997. Moderate and exhaustive endurance exercise influences the interferon-gamma levels in whole-blood culture supernatants. Eur. J. Appl. Physiol. Occup. 76, 165-169. https://doi.org/10.1007/s004210050229
  3. Bruunsgaard, H. 2005. Physical activity and modulation of systemic low-level inflammation. J. Leukoc. Biol. 78, 819-835. https://doi.org/10.1189/jlb.0505247
  4. Danesh, J., J. G. Wheeler, G. M. Hirschfield, S. Eda, G. Eirksdottir, A. Rumley. G. D. Lowe, M. B. Pepys, and V. Gudnason. 2004. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387-1397. https://doi.org/10.1056/NEJMoa032804
  5. Dunn, A. L., M. H. Trivedi, and H. A. Oneal. 2001. Physical activity dose-response effects on outcomes of depression and anxiety. Med. Sci. Sports. Exerc. 33, S587-S597. https://doi.org/10.1097/00005768-200106001-00027
  6. Haahr, P. M., B. K. Pedersen, A. Fomsgaard, N. Tvede, M. Diamant, K. Klarlund, J. Halkjaer-kristensen, and K. Bendtzen. 1991. Effect of physical exercise on in vitro production of interleukin 1, interleukin 6, tumour necrosis factor- alpha, interleukin 2 and interferon-gamma. Int. J. Sport. Med. 12, 223-227. https://doi.org/10.1055/s-2007-1024672
  7. Hamer, M. 2007. The relative influences of fitness and fatness of inflammatory factors. Prev. Med. 44, 3-11. https://doi.org/10.1016/j.ypmed.2006.09.005
  8. Hansbrough, J. F., C. Doré, and W. B. Hansbrough. 1992. Clinical trials of a living dermal tissue replacement placed beneath meshed, split-thickness skin grafts on excised burn wounds. J. Burn. Care. Rehabil. 13, 519-529. https://doi.org/10.1097/00004630-199209000-00004
  9. Hoffiman-Goetz, L. and B. K. Pedersen. 1994. Exercise and the immune system: a model of the stress respose? Immunol. Today. 15, 382-387. https://doi.org/10.1016/0167-5699(94)90177-5
  10. Hoyt. D. B., A. N. Ozkan, J. L. Ninnemann, J. F. Hansbrough, E. Pinney, and S. Wormsley. 1988. Trauma peptide induction of lymphocyte changes predictive of sepsis. J. Surg. Res. 45, 342-348 https://doi.org/10.1016/0022-4804(88)90129-1
  11. Ikarugi, H., T. Taka, S. Nakajima, T. Noguchi, S. Watanabe, Y. Sasaki, S. Haga, T. Ueda, J. Seki, and J. Yamamoto. 1999. Norepinephrin but not epinephrine, enhances platelet reactivity and coagulation after exercise in humans. J. Appl. Physiol. 86, 133-138.
  12. Kappel, M., N. Tvede, H. Galbo, P. M. Haahr, M. Kjaer, M. Linstow, K. Klarlund, and B. K. Pedersen. 1991. Evidence that the effect of physical exercise on NK cell activity is mediated by epinephreine. J. Appl. Physol. 70, 2530-2534.
  13. Kestin, A. S., P. A. Ellis, M. R. Barnard, A. Errichetti, B. A. Rosner, and A. D. Michelson. 1993. Effect of strenuous exercise on platelet activation state and reactivity. Circulation 88, 1502-1511. https://doi.org/10.1161/01.CIR.88.4.1502
  14. Lederer, J. A., M. L. Rodrick, and J. A. Mannick. 1999. The effects of injury on the adaptive immune response. Shock. 11, 153-159. https://doi.org/10.1097/00024382-199903000-00001
  15. Madden, K. S., V. M. Sanders, and D. L. Felten. 1995. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Annu. Rev. Pharmacol. Toxicol. 35, 417-448. https://doi.org/10.1146/annurev.pa.35.040195.002221
  16. Mars, J. C. 1998. The gut as a potential trigger of exercise- induced inflammatory respose. Can. J. Physiol. Pharmachol. 76, 476-484.
  17. Mazzeo, R. S., G. A. Brooks, and S. M. Horvath. 1984. Effects of age on metabolic response to endurance training in rats. J. Appl. Physiol. 57, 1369-1374
  18. Mazzeo, R. S., D. Donovan, M. Fleshner, G. E. Butterfield, S, Zamudio, E. E. Wolfel, and L. G. Moore. 2001. Interleukin-6 response to exercise and high altitude exposure: interleukin of alpha-adrenergic blockade. J. Cell. Physiol. 91, 2143-2149.
  19. McCarthy, D. A. and M. M. Dale. 1988. The leucocytosis of exercise. A review and model. Sports Med. 6, 333-363. https://doi.org/10.2165/00007256-198806060-00002
  20. Mester, J., H. Kleinoder, and Z. Yue. 2006. Vibration training: benefits and risks. J. Biomech. 39, 1056-1065. https://doi.org/10.1016/j.jbiomech.2005.02.015
  21. Meyaard, L., S. A. Otto, R. R. Jonker, M. J. Mijnster, R. P. Keet, and F. Miedema. 1992. Programmed death of T cells in HIV-1 infection. Science 257, 217-219. https://doi.org/10.1126/science.1352911
  22. Miceli, M. C. and J. R. Parnes. 1993. Role of CD4 and CD8 in T cell activation and differentiation. Adv. Immunol. 53, 59-122. https://doi.org/10.1016/S0065-2776(08)60498-8
  23. Moore, F. A. 1999. Posttraumatic complications and changes in blood lymphocyte populations after multiple trauma. Crit. Care Med. 27, 674-675. https://doi.org/10.1097/00003246-199904000-00004
  24. Nieman, D. C. 1994. Exercise, upper respiratory tract infection, and the immune system. Med. Sci. Sports Exerc. 26, 128-139. https://doi.org/10.1249/00005768-199402000-00002
  25. Nieman, D. C. 1997. Risk of upper respiratory tract infection in athletes: an epidemiologic and immunologic perspective. J. Athl. Train. 32, 344-349.
  26. Peake, J. M., K. Suzuki, M. Hordern, G. Wilson, K. Nosaka, and J. S. Coombes. 2005. Plasma cytokine changes in relation to exercise intensity and muscle damage. Eur. J. Appl. Physiol. 95, 514-521. https://doi.org/10.1007/s00421-005-0035-2
  27. Pedersen, B. K. 1991. Influence of physical activity on the cellular immune system: mechanism of action. Int. J. Sports. Med. 12, S23-S29. https://doi.org/10.1055/s-2007-1024746
  28. Penedo, F. J. and J. R. Dahn. 2005. Exercise and well-being: a review of mental and physical health benefits associated with physical activity. Curr. Opin. Psycyiatry 18, 189-193. https://doi.org/10.1097/00001504-200503000-00013
  29. Piepoli, M. F., C. Davos, D. P. Francis, and A. J. Coats. 2004. Exercise training meta-analysis of trials in patients with chronic heart failure. BMJ. 328, 189-195. https://doi.org/10.1136/bmj.37938.645220.EE
  30. Roberts, C. K. and R. J. Barnard. 2005. Effects of exercise and diet on chronic disease. J. Appl. Physiol. 98, 23-30.
  31. Shephard, R. J. and P. N. Shek. 1999. Effects of exercise and training on natural killer cell counts and cytolytic activity: a meta-analysis. Sports Med. 3, 177-195.
  32. Sjodin, T., Y. Westing, and F. Apple. 1990. Biochemical mechanism for oxygen free radical formation during exercise. Sport. Med. 10, 236-254. https://doi.org/10.2165/00007256-199010040-00003
  33. Smith, J. A., M. Kolbuch-Braddon, I. Gillam, R. P. Telford, and M. J. Weidemann. 1995. Changes in the susceptibility of red blood cells to oxidative and osmotic stress following submaximal exercise. Eur. J. Appl. physiol. Occup. Physiol. 70, 427-436. https://doi.org/10.1007/BF00618494
  34. Tsai, K., T. G. Hsu, K. M. Hsu, H. Cheng, T. Y. Lin, C. F. Hsu, and C. W. Kong. 2001. Oxidative DNA damage in human peripheral leukocytes induced by massive aerobic exercise. Free. Radic. Biok. Med. 31, 1465-1472. https://doi.org/10.1016/S0891-5849(01)00729-8
  35. Tuan, T. C., T. G. Hsu, M. C. Fong, C. F. Hsu, K. K. Tsai, C. Y. Lee, and C. W. Kong. 2008. Deleterious effects of short-term, high-intensity exercise on immune function : evidence from leukocyte mitochondrial alterations and apoptosis. J. Sports Med. 42, 11-15. https://doi.org/10.2165/11595460-000000000-00000
  36. Verdaet, D., P. D. Dendale, B. D. Delanghe, J. Delanghe, P. Block, and G. D. Backer. 2004. Association between leisure time physical activity and markers of chronic inflammation related to coronary heart disease. Atheroclerosis 176, 303-310. https://doi.org/10.1016/j.atherosclerosis.2004.05.007
  37. Wang, J. S. and Y. H. Huang. 2005. Effects of exercise intensity on lymphocyte apoptosis induced by oxidatuve stress in man. Eur. J. Appl. Physiol. 95, 290-297. https://doi.org/10.1007/s00421-005-0005-8
  38. Willich, S. N., M. Lewis, H. Lowel, H. R. Arntz, F. Schubert, and R. Schroder. 1993. Physical exertion as a trigger of acute myocardial infarction. N. Enhl. J. Med. 329, 1684-1690. https://doi.org/10.1056/NEJM199312023292302
  39. Wilund, K. R. 2007. Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease? Clin. Sci. 112, 543-555. https://doi.org/10.1042/CS20060368
  40. Woods, J. A., J. M. Davis, J. A. Smith, and D. C. Nieman. 1999. Exercise and cellular innate immune function. Med. Sci. Sports Exerc. 1, 57-66.