DOI QR코드

DOI QR Code

Viscoelastic Behavior of High Density Polyethylene Using High Tibial Osteotomy with Respect to the Strain Rate

근위경골절골술(HTO)용 X-밴드 플레이트에 적용되는 고밀도 폴리에틸렌(HDPE)의 변형률속도에 따른 점탄성거동

  • Received : 2011.11.07
  • Accepted : 2012.02.14
  • Published : 2012.04.01

Abstract

The mechanical behavior of the polymeric material, HDPE depends on both time and temperature. The study of the tensile behavior at different strain rates is important in engineering design of the orthopedics device such as X-band plate. The mechanical properties and deformation mechanisms of HDPE are strongly dependent on the applied strain rate. Generally, the deformation behavior of HDPE based on the stress-strain curve is complex because of the highly inhomogeneous nature of plastic deformation, particularly that of necking. Therefore, we attempted to determine the mechanical behavior of HDPE in this study. Normally, tensile testing under various strain rates of the HDPE has been used to determine the mechanical behavior. We performed tensile tests at various strain rates (1 to 500 %/min) to analyze the viscoelastic behavior on increasing the strain rate. A tensile stress-strain curve was plotted from the data, and the point of transition was marked to calculate the transition stress, strain, and modulus.

고밀도 폴리에틸렌(HDPE)과 같은 고분자재료의 기계적 거동은 시간과 온도에 의존적이다. 따라서 근위경골절골술(HTO)용 X-밴드 플레이트에 적용되는 HDPE의 각기 다른 변형률속도에 따른 인장거동에 대한 연구는 매우 중요하다. 일반적으로 엔지니어링 응력-변형률곡선에 기반을 둔 폴리메트릭 물질의 변형거동은 입자넥킹의 소성변형을 동반한 높은 비균질성을 나타내므로 매우 복잡한 거동을 나타낸다. 본 연구에서는 1~500%/min의 9가지 변형률속도를 적용하여 그에 따른 점탄성 거동을 평가하였다. 그 결과, 저속 변형률속도에서는 최대인장응력이 증가하고 변형률은 감소하였으나 고속 변형률속도에서는 점탄성거동이 급변하는 교차점(Ts)이 발생하였다. 또한 전이점($P_{st}$)에 의해 구해진 전이응력(${\sigma}_{ts}$)은 고속 변형률속도에서 최대인장응력(${\sigma}_{ult}$)보다 저하됨을 관찰할 수 있었고, 초기 모듈러스와 전이점에서의 시컨트 모듈러스의 비인 ${\beta}$를 이용하여 저속과 고속 변형률속도에서의 점탄성 거동을 평가한 결과 고속 변형률속도에서 급격한 ${\beta}$의 증가를 관찰할 수 있었다.

Keywords

References

  1. Wang, J. H., Bae, J. H., H. Lim, C., Shon, W. Y., Kim, C. W. and Cho, J. W., 2009, "Medial Open Wedge High Tibial Osteotomy: The Effect of the Cortical Hinge on Posterior Tibial Slope," The American Journal of Sports Medicine, Vol. 37, No. 12, pp. 2411-2418. https://doi.org/10.1177/0363546509341174
  2. Noyes, F. R., Goebel, S. X. and West, J., 2005, "Opening Wedge Tibial Osteotomy : The 3-Triangle Method to Correct Axial Alignment and Tibial Slope," The American Journal of Sports Medicine, Vol. 33, No. 3, pp. 378-387. https://doi.org/10.1177/0363546504269034
  3. Song, E. K., 2004, "High Tibial Osteotomy for Osteoarthritis of the Knee," J. of Korea Orthop. Assoc., Vol. 39, No. 1, pp. 104-107.
  4. Yoo, J. H., Chang, C. B., Shin, K. S., Seong, S. C. and Kim, T. K., 2008, "Anatomical Reference to Assess the Posterior Tibial Slope in Total Knee Arthroplasty : A Comparison of 5 Anatomical Axes," The Journal of Arthroplasty, Vol. 23, No. 4, pp. 586-592. https://doi.org/10.1016/j.arth.2007.05.006
  5. Zhil'tsova, T. V., Oliveira, M. S. A. and Ferreira, J. A. F., 2009, "Relative Influence of Injection Molding Processing Conditions on HDPE Acetabular Cups Dimensional Stability," Journal of Materials Processing Technology 209, pp. 3894-3904. https://doi.org/10.1016/j.jmatprotec.2008.09.018
  6. Dusunceli, N. and Colak, O. U., 2008, "The Effects of Manufacturing Techniques on Viscoelastic and Viscoplastic Behavior of High Density Poly ethylene (HDPE)," Materials and Design, Vol. 29, pp. 1117-1124. https://doi.org/10.1016/j.matdes.2007.06.003
  7. Elleuch, R. and Taktak, W., 2006, "Viscoelastic Behavior of HDPE Polymer using Tensile and Compressive Loading," JMEPEG, Vol. 15, pp. 111-116. https://doi.org/10.1361/105994906X83475
  8. Roylance D., 2001, "Open Lecture : Engineering Viscoelasticity," Department of Materials Science and Engineering Massachusetts Institute of Technology, Cambridge, MA 02139.
  9. Merry, S. M. and Bray, J. D., 1997, "Time-dependent Mechanical Response of HDPE Geomembranes," J. Geotechnical & Geoenvironmental Engineering, Vol. 123, No. 1, pp. 57-64. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(57)
  10. Beijer, J. G. J. and Spoormaker, J. L., 2000, "Modelling of Creep Behavior in Injection-moulded HDPE," Polymer, Vol. 41, pp. 5443-5449. https://doi.org/10.1016/S0032-3861(99)00753-3
  11. Wesseloo, J., Visser, A. T. and Rust, E., 2004, "A Mathematical Model for the Strain-rate Dependent Stress-strain Response of HDPE Geomembranes," Geotextile and Geomembranes, Vol. 22, pp. 273-295. https://doi.org/10.1016/j.geotexmem.2004.02.002