DOI QR코드

DOI QR Code

A Continuous Cell Separator Based on Gravity and Buoyant Forces in Fluids of Dissimilar Density

서로 다른 밀도의 유체 내 바이오 물질이 받는 중력과 부력 차를 이용한 연속적 세포 분리기

  • Oh, Ae-Gyoung (KAIST, Cell Bench Research Center, Dept. of Bio and Brain Engineering) ;
  • Lee, Dong-Woo (KAIST, Cell Bench Research Center, Dept. of Bio and Brain Engineering) ;
  • Cho, Young-Ho (KAIST, Cell Bench Research Center, Dept. of Bio and Brain Engineering)
  • 오애경 (한국과학기술원 세포벤치연구센터 바이오및뇌공학과) ;
  • 이동우 (한국과학기술원 세포벤치연구센터 바이오및뇌공학과) ;
  • 조영호 (한국과학기술원 세포벤치연구센터 바이오및뇌공학과)
  • Received : 2011.07.27
  • Accepted : 2012.01.19
  • Published : 2012.04.01

Abstract

We present a continuous cell separator that achieves density-dependent and size-independent cell separation based on the net force of gravity and buoyancy forces on the cells in dissimilar density fluids. Previous cell separators are, based on the size or dielectrophoretic property of the cells and, are suitable for size-dependent and density-independent cell separation. However, these properties can make it difficult to collect the same types of cells with the same density but with size variations. The present separator, however, is capable of collecting the same types of cells based on the cell density in the fluid. Regardless of cell size, the proposed chip isolates low density cells, (white blood cells, or WBCs) at the upper outlet while obtaining high-density cells (red blood cells, or RBCs) from the lower outlet based on density. Efficiency levels for separation of WBCs and RBCs were $90.9{\pm}9.1%$ and $86.4{\pm}1.99%$, respectively. The present separator therefore has the potential for use in the pretreatment of whole blood.

본 논문에서는 서로 다른 밀도의 유체 내 바이오 물질이 받는 중력과 부력 차를 이용한 연속적 세포 분리기를 제안하였다. 종래의 크기별 세포분리는 서로 다른 크기의 동일한 밀도를 가지는 세포를 분리하는데 한계가 있다. 반면, 본 논문에서 제안하는 세포 분리기는 미소유로 상하부에 밀도가 다른 다층 유체층 내에서 세포가 받는 중력과 부력 차이로 크기는 다르지만 동일한 밀도를 가지는 세포를 효율적으로 분리할 수 있다. 밀도가 다른 유체층(PBS, 밀도=1.0g/ml, Ficoll, 밀도=1.1g/ml) 내에서 전혈로부터 백혈구(직경=$6-10{\mu}m$, 밀도=1.06~1.1g/ml), 적혈구(직경=$4-6{\mu}m$, 밀도=1.09~1.2g/ml)를 밀도에 따라 분리한 효율이 각각 $90.9{\pm}9.1%$$86.4{\pm}1.99%$로 측정되었다 따라서, 본 세포 분리기는 크기 편차가 있는 동일 밀도의 세포를 크기에 둔감하고 밀도에만 민감한 분리가 가능하다.

Keywords

References

  1. Murate, M., Okamoto, Y., Park, Y.-S., Kaji, N., Tokeshi, M. and Baba, Y., 2009, "Cell Separation by the Combination of Microfluidics and Optical Trapping Force on Microchip," Anal. Bioanal. Chem., Vol. 394, No. 1, pp. 277-283. https://doi.org/10.1007/s00216-009-2648-5
  2. David, W., Inglis, R., Riehn, R., Austin, R. H. and Sturm, J. C., 2004, "Microfluidic High Gradient Magnetic Cell Separation," Appl. Phys., Vol. 85, No. 8, pp. 5093-5095.
  3. Jung, J. and Han, K. H., 2008, "Lateral-Driven Continuous Magnetophoretic Separation of Blood Cells," Appl. Phys. Lett., Vol. 93, No. 22, pp. 223-902.
  4. Iliescu, C., Xu, G. L., Barbarini, E., Avram, M. and Avram, A., 2009, "Microfluidic Device for Continuous Magnetophoretic Separation of White Blood Cells," Microsyst. Technol., Vol. 15, No. 8, pp. 1157-1162. https://doi.org/10.1007/s00542-008-0718-9
  5. Carlo, D. D. and Lee, L. P., 2006, "Dynamic Single Cell Analysis for Quantitative Biology," Anal. Chem., Vol. 78, No. 23, pp. 7918-7925.
  6. Liu, C., Stakenborg, T., Peeters, S. and Lagae, L., 2009, "Cell Manipulation with Magnetic Particles Toward Microfluidic Cytometry," Appl. Phys., Vol. 105, No. 10, pp. 102014. https://doi.org/10.1063/1.3116091
  7. Hughes, M. P., 2002, "Strategies of Dielectrophoretic Separation in Laboratory-on-a-Chip Systems," Electrophoresis, Vol. 23, No. 16, pp. 2569-2582. https://doi.org/10.1002/1522-2683(200208)23:16<2569::AID-ELPS2569>3.0.CO;2-M
  8. Do, I. and Cho, Y.-H., 2005, "A Continuous Cell Separation Chip Using Hydrodynamic Dielectrophoresis (DEP) Process," Sensor. Actuat. APhys., Vol. 121, No. 1, pp. 59-65. https://doi.org/10.1016/j.sna.2005.01.030
  9. Li, Y., Dalton, C., Crabetree, H. J., Nilsson, G. and Kaler, K. V. I. S., 2007, "Continuous Dielectrophoretic Cell Separation Microfluidic Device," Lab Chip, Vol. 7, No. 2, pp. 239-248. https://doi.org/10.1039/b613344d
  10. Han, K.-H. and Frazier, A. B., 2008, "Lateral-Driven Continuous Dielectrophoretic Microseparators for Blood Cells," Lab Chip, Vol. 8, No. 7, pp. 1079-1086. https://doi.org/10.1039/b802321b
  11. Choi, S. and Park, J. K., 2005, "Microfluidic System for Dielectrophoretic Separation Based on a Trapezoidal Electrode Array," Lab Chip, Vol. 5, No. 10, pp. 1161-1167. https://doi.org/10.1039/b505088j
  12. Chen, X., Cui, D. F., Liu, C. C. and Li, H., 2008, "Microfluidic Chip for Blood Cell Separation and Collection Based on Crossflow Filtration," Sensor. Actuat. B-Chem., Vol. 130, No. 1, pp. 216-221. https://doi.org/10.1016/j.snb.2007.07.126
  13. Huang, L. R., Cox, E. C., Austin, R. H. and Sturm, J. C., 2004, "Continuous Particle Separation Through Deterministic Lateral Displacement," Science, Vol. 304, No. 5673, pp. 987-990. https://doi.org/10.1126/science.1094567
  14. Mohamed, H., McCurdy, L. D., Szarowski, D. H., Duva, S., Tuner, J. N. and Caggana, M., 2004, "Tuner and M. Caggana, Development of a Rare Cell Fractionation Device: Application for Cancer Detection," IEEE. T. Nanobiosci., Vol. 3, No. 4, pp. 251-256. https://doi.org/10.1109/TNB.2004.837903
  15. Yamada, M., Nakashima, M. and Seki, M., 2004, "Pinched Flow Fractionation: Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel," Anal. Chem., Vol. 76, No. 18, pp. 5465-5471. https://doi.org/10.1021/ac049863r
  16. Zhang, X. L., Cooper, J. M., Monaghan, P. B. and Haswell, S. J., 2006, "Continuous Flow Separation of Particles Within Asymmetric Microfluidic Device," Lab Chip, Vol. 6, No. 4, pp. 561-566. https://doi.org/10.1039/b515272k
  17. Yamada, M. and Seki, M., 2005, "Hydrodynamic Filtration for on-Chip Particle Concentration and Classification Utilizing Microfluidics," Lab Chip, Vol. 5, No. 11, pp. 1233-1239. https://doi.org/10.1039/b509386d
  18. Yamada, M. and Seki, M., 2006, "Microfluidic Particle Sorter Employing Flow Splitting and Recombining," Anal. Chem., Vol. 78, No. 4, pp. 1357-1362. https://doi.org/10.1021/ac0520083
  19. Yang, S., Undar, A. and Zahn, J. D., 2006, "A Microfluidic Device for Continuous, Real Time Blood Plasma Separation," Lab Chip, Vol. 6, No. 7, pp. 871-880. https://doi.org/10.1039/b516401j
  20. Shevkoplyas, S. S., Yoshida, T., Munn, L. L. and Bitensky, M. W., 2005, "Biomimetic Autoseparation of Leukocytes from Whole Blood in a Microfluidic Device," Anal. Chem., Vol. 77, No. 3, pp. 933-937. https://doi.org/10.1021/ac049037i
  21. Kang, J. H., Kim, B. and Park, J. K., 2009, "Microfluidic Pycnometer for in Situ Analysis of Fluids in Microchannels," Anal. Chem., Vol. 81, No. 7, pp. 2569-2574. https://doi.org/10.1021/ac802492q
  22. Zhang, S., R., Yung, Tai, W.-C. and Kasdan, H., 2005, "Deterministic Lateral Displacement MEMS Device for Continuous Blood Cell Separation," Proceedings of the 18th IEEE International Conference on Micro Electro Mechanical Systems, pp. 851-854.
  23. Chang, S. and Cho, Y.-H., 2008, "A Continuous Size-Dependent Particle Separator Using a Negative Dielectrophoretic Virtual Pillar Array," Lab Chip, Vol. 8, No. 11, pp. 1930-1936. https://doi.org/10.1039/b806614k
  24. Boym, A., 1983, "Isolation of Human Blood Monocytes with Nycodenz," J. Immunol., Vol. 17, No. 5, pp. 429-436.
  25. Sorette, M. P., Shiffer, K. and Clark, M. R., 1992, "Improved Isolation of Normal Human Reticulocytes via Exploitation of Chloride-Dependent Potassium Transport," Blood, Vol. 80, No. 1, pp. 249-254.