DOI QR코드

DOI QR Code

COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING USING IMPLICIT RELATION ON INTUITIONISTIC FUZZY METRIC SPACE

  • Park, Jong-Seo (Department of Mathematics Education and Institute of Mathematics Education, Chinju National University of Education)
  • Received : 2011.12.12
  • Accepted : 2012.01.31
  • Published : 2012.03.25

Abstract

In this paper, we define the weakly commuting mapping and prove the fixed point theorem for weakly commuting mappings under some conditions on intuitionistic fuzzy metric spaces.

Keywords

References

  1. Altun, I., Turkoglu, D., 2008. Some fixed point theorems on fuzzy metric spaces with implicit relations. Comm. Korean Math. Soc. 23(1), 111-124. https://doi.org/10.4134/CKMS.2008.23.1.111
  2. Cho, Y.J., 1997. Fixed points in fuzzy metric spaces. J. Fuzzy Math. 5(4), 949- 962.
  3. Grabiec, M., 1988. Fixed point in fuzzy metric spaces. Fuzzy Sets and Systems 27, 385-389. https://doi.org/10.1016/0165-0114(88)90064-4
  4. Imdad, M., Kumar, S., Khan, M.S., 2002. Remarks on some fixed point theorems satisfying implicit relations. Rad. Math. 11, 135-143.
  5. Jungck, G., 1976. Commuting mappings and fixed points. Amer. Math. Monthly 83, 261-263. https://doi.org/10.2307/2318216
  6. Kaleva, O., Seikkala, S., 1984. On fuzzy metric spaces. Fuzzy Sets and Systems 12, 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
  7. Kramosil,J., Michalek J., 1975. Fuzzy metric and statistical metric spaces. Ky- bernetica 11, 326-334.
  8. Lee, Y.C., 2009. Common fixed point theorems for weakly commuting mappings in fuzzy metric spaces. Graduate School of Education, Gyeongsang University of Education.
  9. Park, J.H., Park, J.S., Kwun, Y.C., 2006. A common fixed point theorem in the intuitionistic fuzzy metric space. Advances in Natural Comput. Data Min- ing(Proc. 2nd ICNC and 3rd FSKD), 293-300.
  10. Park, J.S., Park, J.H., Kwun, Y.C., 2008. On some results for ve mappings using compatibility of type($\alpha$) in intuitionistic fuzzy metric space. International J. Fuzzy Logic Intelligent Systems 8(4), 299-305. https://doi.org/10.5391/IJFIS.2008.8.4.299
  11. Schweizer, B., Sklar, A., 1960. Statistical metric spaces. Pacific J. Math. 10, 314-334.