DOI QR코드

DOI QR Code

SHADOWABLE CHAIN TRANSITIVE SETS OF C1-GENERIC DIFFEOMORPHISMS

  • Lee, Keon-Hee (Department of Mathematics Chungnam National University) ;
  • Wen, Xiao (Department of Mathematics Beihang University)
  • Received : 2010.07.14
  • Published : 2012.03.31

Abstract

We prove that a locally maximal chain transitive set of a $C^1$-generic diffeomorphism is hyperbolic if and only if it is shadowable.

Keywords

References

  1. F. Abdenur, Generic robustness of spectral decompositions, Ann. Scient. Ec. Norm. Sup. (4) 36 (2003), no. 3, 213-224. https://doi.org/10.1016/S0012-9593(03)00008-9
  2. F. Abdenur and L. J. Diaz, Pseudo-orbit shadowing in the $C^{1}$ topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245. https://doi.org/10.3934/dcds.2007.17.223
  3. C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1, 33-104.
  4. S. Crovisier, Periodic orbits and chain-transitive sets of $C^{1}$-diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 104 (2006), 87-141. https://doi.org/10.1007/s10240-006-0002-4
  5. K. Lee and M. Lee, Hyperbolicity of $C^{1}$-stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145. https://doi.org/10.3934/dcds.2010.27.1133
  6. R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
  7. K. Sakai, $C^{1}$-stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029.
  8. M. Sambarino and J. Vieitez, On $C^{1}$-persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481. https://doi.org/10.3934/dcds.2006.14.465
  9. M. Sambarino and J. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1325-1333. https://doi.org/10.3934/dcds.2009.24.1325
  10. X. Wen, S. Gan, and L. Wen, $C^{1}$-stably shadowable chain components are hyperbolic, J. Differential Equations 246 (2009), no. 1, 340-357. https://doi.org/10.1016/j.jde.2008.03.032
  11. D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4 729-733. https://doi.org/10.1088/0951-7715/22/4/002

Cited by

  1. Regular maps with the specification property vol.33, pp.7, 2013, https://doi.org/10.3934/dcds.2013.33.2991
  2. Average Shadowing Property With Non Uniformly Hyperbolicity on Periodic Points vol.12, pp.1, 2014, https://doi.org/10.1080/1726037X.2014.917826
  3. Expansive transitive sets for robust and generic diffeomorphisms 2018, https://doi.org/10.1080/14689367.2017.1335287
  4. Usual limit shadowable homoclinic classes of generic diffeomorphisms vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-91
  5. Hyperbolicity and types of shadowing for $C^1$ generic vector fields vol.34, pp.7, 2013, https://doi.org/10.3934/dcds.2014.34.2963
  6. Shadowing, expansiveness and specification for C1-conservative systems vol.35, pp.3, 2015, https://doi.org/10.1016/S0252-9602(15)30005-9
  7. HYPERBOLICITY OF CHAIN TRANSITIVE SETS WITH LIMIT SHADOWING vol.51, pp.5, 2014, https://doi.org/10.4134/BKMS.2014.51.5.1259
  8. THE LOCAL STAR CONDITION FOR GENERIC TRANSITIVE DIFFEOMORPHISMS vol.31, pp.2, 2016, https://doi.org/10.4134/CKMS.2016.31.2.389