References
- F. Abdenur, Generic robustness of spectral decompositions, Ann. Scient. Ec. Norm. Sup. (4) 36 (2003), no. 3, 213-224. https://doi.org/10.1016/S0012-9593(03)00008-9
-
F. Abdenur and L. J. Diaz, Pseudo-orbit shadowing in the
$C^{1}$ topology, Discrete Contin. Dyn. Syst. 17 (2007), no. 2, 223-245. https://doi.org/10.3934/dcds.2007.17.223 - C. Bonatti and S. Crovisier, Recurrence et genericite, Invent. Math. 158 (2004), no. 1, 33-104.
-
S. Crovisier, Periodic orbits and chain-transitive sets of
$C^{1}$ -diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 104 (2006), 87-141. https://doi.org/10.1007/s10240-006-0002-4 -
K. Lee and M. Lee, Hyperbolicity of
$C^{1}$ -stably expansive homoclinic classes, Discrete Contin. Dyn. Syst. 27 (2010), no. 3, 1133-1145. https://doi.org/10.3934/dcds.2010.27.1133 - R. Mane, An ergodic closing lemma, Ann. of Math. (2) 116 (1982), no. 3, 503-540. https://doi.org/10.2307/2007021
-
K. Sakai,
$C^{1}$ -stably shadowable chain components, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 987-1029. -
M. Sambarino and J. Vieitez, On
$C^{1}$ -persistently expansive homoclinic classes, Discrete Contin. Dyn. Syst. 14 (2006), no. 3, 465-481. https://doi.org/10.3934/dcds.2006.14.465 - M. Sambarino and J. Vieitez, Robustly expansive homoclinic classes are generically hyperbolic, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1325-1333. https://doi.org/10.3934/dcds.2009.24.1325
-
X. Wen, S. Gan, and L. Wen,
$C^{1}$ -stably shadowable chain components are hyperbolic, J. Differential Equations 246 (2009), no. 1, 340-357. https://doi.org/10.1016/j.jde.2008.03.032 - D. Yang and S. Gan, Expansive homoclinic classes, Nonlinearity 22 (2009), no. 4 729-733. https://doi.org/10.1088/0951-7715/22/4/002
Cited by
- Regular maps with the specification property vol.33, pp.7, 2013, https://doi.org/10.3934/dcds.2013.33.2991
- Average Shadowing Property With Non Uniformly Hyperbolicity on Periodic Points vol.12, pp.1, 2014, https://doi.org/10.1080/1726037X.2014.917826
- Expansive transitive sets for robust and generic diffeomorphisms 2018, https://doi.org/10.1080/14689367.2017.1335287
- Usual limit shadowable homoclinic classes of generic diffeomorphisms vol.2012, pp.1, 2012, https://doi.org/10.1186/1687-1847-2012-91
- Hyperbolicity and types of shadowing for $C^1$ generic vector fields vol.34, pp.7, 2013, https://doi.org/10.3934/dcds.2014.34.2963
- Shadowing, expansiveness and specification for C1-conservative systems vol.35, pp.3, 2015, https://doi.org/10.1016/S0252-9602(15)30005-9
- HYPERBOLICITY OF CHAIN TRANSITIVE SETS WITH LIMIT SHADOWING vol.51, pp.5, 2014, https://doi.org/10.4134/BKMS.2014.51.5.1259
- THE LOCAL STAR CONDITION FOR GENERIC TRANSITIVE DIFFEOMORPHISMS vol.31, pp.2, 2016, https://doi.org/10.4134/CKMS.2016.31.2.389