DOI QR코드

DOI QR Code

SENSITIVITY ANALYSIS FOR A CLASS OF IMPLICIT MULTIFUNCTIONS WITH APPLICATIONS

  • Li, Shengjie (College of Mathematics and Statistics Chongqing University) ;
  • Li, Minghua (College of Mathematics and Statistics Chongqing University)
  • Received : 2010.05.11
  • Published : 2012.03.31

Abstract

In this paper, under some suitable conditions and in virtue of a selection which depends on a vector-valued function and a feasible set map, the sensitivity analysis of a class of implicit multifunctions is investigated. Moreover, by using the results established, the solution sets of parametric vector optimization problems are studied.

Keywords

References

  1. T. Amaroq and L. Thibault, On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems, Numer. Funct. Anal. Optim. 16 (1995), 1293-1307. https://doi.org/10.1080/01630569508816674
  2. J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, 1984.
  3. J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.
  4. J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.
  5. J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), no. 1, 9-52. https://doi.org/10.1007/BF00938588
  6. A. L. Dontchev, Implicit function theorems for generalized equations, Math. Programming 70 (1995), no. 1, Ser. A, 91-106.
  7. A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Program- ming, Academic Press, New York, New York, 1983.
  8. A. J. King and R. T. Rockafellar, Sensitivity analysis for nonsmooth generalized equa- tions, Math. Programming 55 (1992), no. 2, Ser. A, 193-212. https://doi.org/10.1007/BF01581199
  9. H. Kuk, T. Tanino, and M. Tanaka, Sensitivity analysis in vector optimization, J. Optim. Theory Appl. 89 (1996), no. 3, 713-730. https://doi.org/10.1007/BF02275356
  10. A. B. Levy, Implicit multifunction theorems for the sensitivity analysis of variational conditions, Math. Programming 74 (1996), no. 3, Ser. A, 333-350. https://doi.org/10.1007/BF02592203
  11. A. B. Levy and R. T. Rockafellar, Variational conditions and the proto-differentiation of partial subgradient mappings, Nonlinear Anal. 26 (1996), no. 12, 1951-1964. https://doi.org/10.1016/0362-546X(95)00047-Y
  12. M. H. Li and S. J. Li, Second-order differential and sensitivity properties of weak vector variational inequalities, J. Optim. Theory Appl. 144 (2010), no. 1, 76-87. https://doi.org/10.1007/s10957-009-9592-6
  13. S. J. Li and K. W. Meng, Contingent derivatives of set-valued maps with applications to vector optimization, submitted. https://doi.org/10.1007/BF01594928
  14. S. J. Li, K. W. Meng, and J.-P. Penot, Calculus rules for derivatives of multimaps, Set-Valued Var. Anal. 17 (2009), no. 1, 21-39. https://doi.org/10.1007/s11228-009-0105-4
  15. S. J. Li, H. Yan, and G. Y. Chen, Differential and sensitivity properties of gap functions for vector variational inequalities, Math. Methods Oper. Res. 57 (2003), no. 3, 377-391. https://doi.org/10.1007/s001860200254
  16. K. W. Meng and S. J. Li, Differential and sensitivity properties of gap functions for Minty vector variational inequalities, J. Math. Anal. Appl. 337 (2008), no. 1, 386-398. https://doi.org/10.1016/j.jmaa.2007.04.009
  17. J.-P. Penot, Differentiability of relations and differential stability of perturbed optimiza- tion problems, SIAM J. Control Optim. 22 (1984), no. 4 529-551. https://doi.org/10.1137/0322033
  18. Y. P. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities defined on polyhedral sets, Math. Oper. Res. 14 (1989), no. 3, 410-432. https://doi.org/10.1287/moor.14.3.410
  19. Y. P. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities, Math. Oper. Res. 17 (1992), no. 1, 61-76. https://doi.org/10.1287/moor.17.1.61
  20. S. M. Robinson, Generalized equations and their solutions. I. Basic theory, Math. Programming Stud. 10 (1979), 128-141. https://doi.org/10.1007/BFb0120850
  21. S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), no. 1, 43-62. https://doi.org/10.1287/moor.5.1.43
  22. S. M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), no. 2, 292-309. https://doi.org/10.1287/moor.16.2.292
  23. R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), suppl., 449-482. https://doi.org/10.1016/S0294-1449(17)30034-3
  24. R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Math. Programming Stud. 17 (1982), 28-66. https://doi.org/10.1007/BFb0120958
  25. R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
  26. Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Academic Press, New York, 1985.
  27. A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl. 66 (1990), no. 3, 477-487. https://doi.org/10.1007/BF00940933
  28. A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res. 30 (2005), no. 1, 109-126. https://doi.org/10.1287/moor.1040.0115
  29. D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization, J. Optim. Theory Appl. 70 (1991), no. 2, 385-396. https://doi.org/10.1007/BF00940634
  30. T. Tanino, Sensitivity analysis in multiobjective optimization, J. Optim. Theory Appl. 56 (1988), no. 3, 479-499. https://doi.org/10.1007/BF00939554
  31. R. L. Tobin, Sensitivity analysis for variational inequalities, J. Optim. Theory Appl. 48 (1986), no. 1 191-204. https://doi.org/10.1007/BF00938597

Cited by

  1. Some results on sensitivity analysis in set-valued optimization 2017, https://doi.org/10.1007/s11117-017-0483-z