References
- T. Amaroq and L. Thibault, On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems, Numer. Funct. Anal. Optim. 16 (1995), 1293-1307. https://doi.org/10.1080/01630569508816674
- J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley and Sons, New York, 1984.
- J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990.
- J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-Verlag, New York, 2000.
- J. M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), no. 1, 9-52. https://doi.org/10.1007/BF00938588
- A. L. Dontchev, Implicit function theorems for generalized equations, Math. Programming 70 (1995), no. 1, Ser. A, 91-106.
- A. V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Program- ming, Academic Press, New York, New York, 1983.
- A. J. King and R. T. Rockafellar, Sensitivity analysis for nonsmooth generalized equa- tions, Math. Programming 55 (1992), no. 2, Ser. A, 193-212. https://doi.org/10.1007/BF01581199
- H. Kuk, T. Tanino, and M. Tanaka, Sensitivity analysis in vector optimization, J. Optim. Theory Appl. 89 (1996), no. 3, 713-730. https://doi.org/10.1007/BF02275356
- A. B. Levy, Implicit multifunction theorems for the sensitivity analysis of variational conditions, Math. Programming 74 (1996), no. 3, Ser. A, 333-350. https://doi.org/10.1007/BF02592203
- A. B. Levy and R. T. Rockafellar, Variational conditions and the proto-differentiation of partial subgradient mappings, Nonlinear Anal. 26 (1996), no. 12, 1951-1964. https://doi.org/10.1016/0362-546X(95)00047-Y
- M. H. Li and S. J. Li, Second-order differential and sensitivity properties of weak vector variational inequalities, J. Optim. Theory Appl. 144 (2010), no. 1, 76-87. https://doi.org/10.1007/s10957-009-9592-6
- S. J. Li and K. W. Meng, Contingent derivatives of set-valued maps with applications to vector optimization, submitted. https://doi.org/10.1007/BF01594928
- S. J. Li, K. W. Meng, and J.-P. Penot, Calculus rules for derivatives of multimaps, Set-Valued Var. Anal. 17 (2009), no. 1, 21-39. https://doi.org/10.1007/s11228-009-0105-4
- S. J. Li, H. Yan, and G. Y. Chen, Differential and sensitivity properties of gap functions for vector variational inequalities, Math. Methods Oper. Res. 57 (2003), no. 3, 377-391. https://doi.org/10.1007/s001860200254
- K. W. Meng and S. J. Li, Differential and sensitivity properties of gap functions for Minty vector variational inequalities, J. Math. Anal. Appl. 337 (2008), no. 1, 386-398. https://doi.org/10.1016/j.jmaa.2007.04.009
- J.-P. Penot, Differentiability of relations and differential stability of perturbed optimiza- tion problems, SIAM J. Control Optim. 22 (1984), no. 4 529-551. https://doi.org/10.1137/0322033
- Y. P. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities defined on polyhedral sets, Math. Oper. Res. 14 (1989), no. 3, 410-432. https://doi.org/10.1287/moor.14.3.410
- Y. P. Qiu and T. L. Magnanti, Sensitivity analysis for variational inequalities, Math. Oper. Res. 17 (1992), no. 1, 61-76. https://doi.org/10.1287/moor.17.1.61
- S. M. Robinson, Generalized equations and their solutions. I. Basic theory, Math. Programming Stud. 10 (1979), 128-141. https://doi.org/10.1007/BFb0120850
- S. M. Robinson, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), no. 1, 43-62. https://doi.org/10.1287/moor.5.1.43
- S. M. Robinson, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), no. 2, 292-309. https://doi.org/10.1287/moor.16.2.292
- R. T. Rockafellar, Proto-differentiability of set-valued mappings and its applications in optimization, Ann. Inst. H. Poincare Anal. Non Lineaire 6 (1989), suppl., 449-482. https://doi.org/10.1016/S0294-1449(17)30034-3
- R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Math. Programming Stud. 17 (1982), 28-66. https://doi.org/10.1007/BFb0120958
- R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, Springer, Berlin, 1998.
- Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Optimization, Academic Press, New York, 1985.
- A. Shapiro, On concepts of directional differentiability, J. Optim. Theory Appl. 66 (1990), no. 3, 477-487. https://doi.org/10.1007/BF00940933
- A. Shapiro, Sensitivity analysis of parameterized variational inequalities, Math. Oper. Res. 30 (2005), no. 1, 109-126. https://doi.org/10.1287/moor.1040.0115
- D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization, J. Optim. Theory Appl. 70 (1991), no. 2, 385-396. https://doi.org/10.1007/BF00940634
- T. Tanino, Sensitivity analysis in multiobjective optimization, J. Optim. Theory Appl. 56 (1988), no. 3, 479-499. https://doi.org/10.1007/BF00939554
- R. L. Tobin, Sensitivity analysis for variational inequalities, J. Optim. Theory Appl. 48 (1986), no. 1 191-204. https://doi.org/10.1007/BF00938597
Cited by
- Some results on sensitivity analysis in set-valued optimization 2017, https://doi.org/10.1007/s11117-017-0483-z