DOI QR코드

DOI QR Code

Electro-optic Electric Field Sensor Utilizing Ti:LiNbO3 Symmetric Mach-Zehnder Interferometers

  • Jung, Hong-Sik (Department of Electronic Engineering, Hongik University)
  • 투고 : 2011.10.04
  • 심사 : 2012.02.13
  • 발행 : 2012.03.25

초록

The use of a $Ti:LiNbO_3$ symmetric Mach-Zehnder interferometric intensity modulator with a push-pull lumped electrode and a plate-type probe antenna to measure an electric field strength is described. The modulator has a small device size of $46{\times}7{\times}1mm$ and operates at a wavelength of $1.3{\mu}m$. The output characteristic of the interferometer shows the modulation depth of 100% and 75%, and $V_{\pi}$ voltage of 6.6 V, and 6.6 V at the 200 Hz and 1 KHz, respectively. The minimum detectable electric field is ~1.84 V/m, ~3.28 V/m, and ~11.6 V/m, corresponding to a dynamic range of about ~22 dB, ~17 dB, and ~6 dB at frequencies of 500 KHz, 1 MHz and 5 MHz, respectively.

키워드

참고문헌

  1. H. Y. Lee, T. H. Lee, W. T. Shay, and C. T. Lee, "Reflective type segmented electro-optical electric field sensor," Sens. Actuators A 148, 355-358 (2008). https://doi.org/10.1016/j.sna.2008.08.013
  2. T. H. Lee, P. I. Wu, and C. T. Lee, "Intergraded $LiNbO_{3}$ electro-optical electromagnetic field sensor," Microwave and Optical Technol. Lett. 49, 2312-2314 (2007). https://doi.org/10.1002/mop.22715
  3. T. H. Lee, F. T. Hwang, W. T. Shay, and C. T. Lee, "Electromagnetc field sensor using Mach-Zehnder waveguide modulator," Microwave and Optical Technol. Lett. 48, 1897-1899 (2006). https://doi.org/10.1002/mop.21776
  4. N. Hidaka, K. Kobayashi, H. Sugama, R. Usui, Y. Tanabe, and O. Hashimoto, "Long-periodic dipole array-type optical electric field sensor," IEICE Trans. Electron. E88-C, 98-104 (2005). https://doi.org/10.1093/ietele/E88-C.1.98
  5. Y. J. Rao, H. Gnewuch, C. N. Pannell, and D. A. Jackson, "Electro-optic electric field based on periodically poled $LiNbO_{3}$," Electron. Lett. 35, 596-597 (1999). https://doi.org/10.1049/el:19990374
  6. C. H. Bulmer and W. K. Burns, "Linear interferometric modulators in Ti:$LiNbO_{3}$," J. Lightwave Technol. LT-2, 512-521 (1984).
  7. D. H. Naghski, J. T. Boyd, H. E. Jackson, S. Sriram, S. A. Kingsley, and J. Latess, "An integrated photonic Mach-Zehnder interferometer with no electrodes for sensing electric fields," J. Lightwave Technol. 12, 1092-1098 (1994). https://doi.org/10.1109/50.296204
  8. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill Book Company, New York, USA, 1985), Chapter 5.
  9. Optiwave, OptiBPM 9.0: Waveguide Optics Design Software.

피인용 문헌

  1. The structure and optical properties of Lithium Niobate grown on quartz for photonics application vol.162, 2017, https://doi.org/10.1051/epjconf/201716201005
  2. Chem/bio sensing with non-classical light and integrated photonics vol.143, pp.3, 2018, https://doi.org/10.1039/C7AN01011G
  3. Design and Development of an Electro-Optic Type-Flow Transmitter Using Mach–Zehnder Interferometer vol.65, pp.7, 2016, https://doi.org/10.1109/TIM.2016.2540886
  4. Propylene Carbonate Based Compact Fiber Mach–Zehnder Interferometric Electric Field Sensor vol.31, pp.10, 2013, https://doi.org/10.1109/JLT.2013.2254466
  5. Optical investigations of photonics lithium niobate vol.120, 2015, https://doi.org/10.1016/j.solener.2015.07.044
  6. Study of an Electro-Optic Technique of Level Transmitter Using Mach-Zehnder Interferometer and Float as Primary Sensing Elements vol.16, pp.11, 2016, https://doi.org/10.1109/JSEN.2016.2544960
  7. Applying of microwave asymmetrical double-ridged waveguide for measuring of the integrated optical electrodeless electric field sensor sensitivity vol.85, pp.5, 2014, https://doi.org/10.1063/1.4878720
  8. Push–pull slab coupled optical sensor for measuring electric fields in a vibrational environment vol.54, pp.16, 2015, https://doi.org/10.1364/AO.54.005203
  9. Design and Analysis of an Electro-Optic Type Pressure Transmitter Using Bellows as Primary Sensor vol.18, pp.18, 2018, https://doi.org/10.1109/JSEN.2018.2862921
  10. pp.1793-6667, 2018, https://doi.org/10.1142/S0218625X19500689