실 험
촉매반응의 일반적인 실험과정
팔라듐 착물에 의한 1-bromo-4-fluorobenzene의 시안화촉매반응. Schlenk flask(10 mL)에 교반에 필요한 자석과 함께 Pd2(dba)3C6H6(5 mg, 0.005 mmol), PPh3(7.9 mg, 0.03 mmol), Zn(19.7 mg, 0.3 mmol), 1-bromo-4-fluorobenzene(0.028 ml, 0.25 mmol), 그리고 Zn(CN)2 (17.7 mg, 0.151 mmol)을 넣고 DMA(3 mL)를 가한 후, 질소 기압에서 120 ℃, 4시간 동안 저어주었다. 혼합용액을 실온으로 식힌 후, Pasteur pipette을 이용하여 용액을 vial에 옮겨 담은 다음 알루미나를 약 1 cm 채운 짧은 유리관(0.7×15 cm)을 통과시키면서 diethyl ether로 용출하여 노란색의 맑은 용액을 얻었다. 이 용액을 GC/MS(MS/FID detector)로 분석하였다. 4-fluorobenzonitrile(81.4%), 부생성물인 benzonitrile(7.0%) 그리고 4,4'-difluoro-1,1'-biphenyl(11.2%)이 각각 생성되었다. For 4-fluorobenzonitrile(C7H4N1F1): GC/MS: m/z = 121, 106, 94, 75, 63, 50, 37, 26, 14.
References
- Larock, R. C. Comprehensive Organic Transformations, Vol. 819; VCH: New York, 1989; p 28.
- Tsuji, J. Transition Metal Reagents and Catalysts-Innovations in Organic Synthesis; John Wiley & Sons: Chichester, 2000; p 29.
- Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Application of Transition Metal Catalysts in Organic Synthesis; Springer Verlag: Berlin, Heidelberg, 1999; p 149.
- Magano, J.; Dunetz, J. R. Chem. Rev. 2011, 111, 2177. https://doi.org/10.1021/cr100346g
- Lindley, J. Tetrahedron 1984, 40, 1433. https://doi.org/10.1016/S0040-4020(01)91791-0
- Bacon, R. G. R.; Hill, H. A. O. J. Chem. Soc. 1964, 1097. https://doi.org/10.1039/jr9640001097
- Ellis, G. P.; Romney-Alexander, T. M. Chem. Rev. 1987. 87, 779. https://doi.org/10.1021/cr00080a006
- Sandmeyer, T. Chem. Ber. 1885, 18, 1946.
- Sandmeyer, T. Chem. Ber. 1884, 17, 2650. https://doi.org/10.1002/cber.188401702202
- Beletskaya, I. P.; Sigeev, A. S.; Peregudov, A. S.; Petrovskii, P. V. J. Organomet. Chem. 2004, 689, 3810. https://doi.org/10.1016/j.jorganchem.2004.07.019
- Lucke, B.; Narayana, K. V.; Martin, A.; Jahnisch, K. Adv. Synth. Catal. 2004, 346, 1407. https://doi.org/10.1002/adsc.200404027
- Rombi, E.; Ferino, I.; Monaci, R.; Picciau, C.; Solinas, V.; Buzzoni, R. Appl. Catal., A 2004, 266, 73. https://doi.org/10.1016/j.apcata.2004.01.028
- Liu, Y.; Zhong, M.; Yu, W.; Ma, Y. L. Synth. Commun. 2005, 35, 2951. https://doi.org/10.1080/00397910500278214
- Schareina, T.; Zapf, A.; Cotte, A.; Muller, N.; Beller, M. Synthesis 2008, 3351.
- Sundermeier, M.; Zapf, A.; Beller, M. Eur. J. Inorg. Chem. 2003, 3513.
- Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049. https://doi.org/10.1039/c1cs15004a
- Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N. Bull. Chem. Soc. Jpn. 1975, 48, 3298. https://doi.org/10.1246/bcsj.48.3298
- Dalton, J. R.; Regen, S. L. J. Org. Chem. 1979, 44, 4443. https://doi.org/10.1021/jo01338a042
- Akita, Y.; Shimazaki, M.; Ohta, A. Synthesis 1981, 974.
- Anderson, B. A.; Bell, E. C.; Ginah, F. O.; Harn, N. K.; Pagh, L. M.; Wepsiec, J. P. J. Org. Chem. 1998, 63, 8224. https://doi.org/10.1021/jo9808674
- Tagagi, K.; Okamoto, T.; Sakakibara, Y.; Oka, S. Chem. Lett. 1973, 471.
- Takagi, K.; Okamoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N. Bull. Chem. Soc. Jpn. 1976, 49, 3177. https://doi.org/10.1246/bcsj.49.3177
- Sekiya, A.; Ishikawa, N. Chem. Lett. 1975, 277.
- Chidambaram, R. Tetrahedron Lett. 2004, 45, 1441. https://doi.org/10.1016/j.tetlet.2003.12.040
- Ramnauth, J.; Bhardwaj, N.; Renton, P.; Rakhit, S.; Maddaford, S. P. Synlett 2003, 2237.
- Veauthier, J. M.; Carlson, C. N.; Collis, G. E.; Kiplinger, J. L.; John, K. D. Synthesis 2005, 2683.
- Sundermeier, M.; Zapf, A.; Beller, M. Angew. Chem. Int. Ed. 2003, 42, 1661. https://doi.org/10.1002/anie.200250778
- Schareina, T.; Zapf, A.; Beller, M. Chem. Commun. 2004, 1388.
- Schareina, T.; Zapf, A.; Beller, M. J. Organomet. Chem. 2004, 689, 4576. https://doi.org/10.1016/j.jorganchem.2004.08.020
- Weissman, S. A.; Zewge, D.; Chen, C. J. Org. Chem. 2005, 70, 1508. https://doi.org/10.1021/jo0481250
- Grossmann, O.; Gelman, D. Org. Lett. 2006, 8, 1189. https://doi.org/10.1021/ol0601038
- Sundermeier, M.; Mutyala, S.; Zapf, A.; Spannenberg, A.; Beller, M. J. Organomet. Chem. 2003, 684, 50. https://doi.org/10.1016/S0022-328X(03)00503-5
- McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493. https://doi.org/10.1146/annurev.pc.33.100182.002425
- Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds; Academic Press: London, 1970.
- Jensen, R. S.; Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. Tetrahedron Lett. 2005, 46, 8645. https://doi.org/10.1016/j.tetlet.2005.10.052
- Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 3271. https://doi.org/10.1016/S0040-4039(00)00384-1
- Sundermeier, M.; Zapf, A.; Mutyala, S.; Baumann, W.; Sans, J.; Weiss, S.; Beller, M. Chem. Eur. J. 2003, 9, 1828. https://doi.org/10.1002/chem.200390210
- Schareina, T.; Jackstell, R.; Schulz, T.; Zapf, A.; Cotte, A.; Gotta, M.; Beller, M. Adv. Synth. Catal. 2009, 351, 643. https://doi.org/10.1002/adsc.200800733
- Shim, Y. J.; Lee, H. J.; Park, S. J. Organomet. Chem. 2012, 696, 4173. https://doi.org/10.1016/j.jorganchem.2011.09.009
- Schareina, T.; Zapf, A.; Magerlein W.; Muller, N.; Beller, M. Tetrahedron Lett. 2007, 48, 1087 https://doi.org/10.1016/j.tetlet.2006.12.087
- Mukhopadhyay, S.; Rothenberg, G.; Wiener, H.; Sasson, Y. New J. Chem. 2000, 24, 305. https://doi.org/10.1039/b001655l
- Mukhopadhyay, S.; Rothenberg, G.; Joshi, A.; Baidossi, M.; Sasson, Y. Adv. Synth. Catal. 2002, 344, 348. https://doi.org/10.1002/1615-4169(200206)344:3/4<348::AID-ADSC348>3.0.CO;2-K
- Hartwig, J. F. Angew. Chem. Int. Ed. 1998, 37, 2046. https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046::AID-ANIE2046>3.0.CO;2-L
- Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314. https://doi.org/10.1021/ar980063a