DOI QR코드

DOI QR Code

DFT Study for Substitution Patterns of C20H18X2 Regioisomers (X = F, Cl, Br, or OH)

  • Hwang, Yong-Gyoo (Division of Microelectronics and Display Technology, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Lee, Seol (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University) ;
  • Lee, Kee-H. (Department of Chemistry, and Nanoscale Sciences and Technology Institute, Wonkwang University)
  • Received : 2011.11.30
  • Accepted : 2012.01.25
  • Published : 2012.02.20

Abstract

We used the hybrid density-functional (B3LYP/6-31G(d,p)) method to analyze the substitution patterns of $C_{20}H_{18}X_2$ derivatives (X = F, Cl, Br, or OH) obtained as disubstituted $C_{20}H_{20}$ cages. Our results suggest that the cis-1 regioisomers (1,2-dihalo derivatives) are less stable than the trans-1 regioisomers (1,20-dihalo derivatives), whereas in the case of the dihydroxy derivatives, the cis-1 regioisomer is more stable than the trans-1 regioisomer. This implies that in the dihalo-induced strain cages of $C_{20}H_{18}X_2$, the strain effect would affect the relative energies, while in the dihydroxide, the hydrogen bonds have a stronger effect on the relative energies in cis-1 regioisomer than the strain effect do. Thus this supports the experimental result in which the bisvicinal tetrol was of particular preparative-synthetic interest as a substitute for the lacking bisvicinal tetrabromide. Further, the topologies of the HOMO and LUMO characteristics of all $C_{20}H_{18}Cl_2$ and $C_{20}H_{18}Br_2$ regioisomers with the same symmetry are same, but they are different from those of $C_{20}H_{18}F_2$ and $C_{20}H_{18}(OH)_2$. This indicates that the five regioisomers of each $C_{20}H_{20}$ disubstituted derivative will have an entirely different set of characteristic chemical reactions.

Keywords

References

  1. Kroto, H. W. Nature 1987, 329, 529. https://doi.org/10.1038/329529a0
  2. Schmalz, T. Z.; Seitz, W. A.; Klein, D. J.; Hite, D. G. J. Am. Chem. Soc. 1998, 110, 1113. https://doi.org/10.1021/ja00212a020
  3. Prinzbach, H.; Weiler, A.; Landenberger, P.; Wahl, F.; Worth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Issendorff, B. von. Nature 2000, 407, 60. https://doi.org/10.1038/35024037
  4. Hirsch, A. The Chemistry of Fullerenes, New York: Thieme, 1994.
  5. Sabirov, D. S.; Bulgakov, R. G.; Khursan, S. L. Arkivoc 2011, 8, 200.
  6. Scheumann, K.; Sackers, E.; Bertau, M.; Leonhardt, J.; Hunkler, D.; Fritz, H.; Wörth, J.; Prinzbach, H. J. Chem. Soc., Perkin Trans. 1998, 2, 1195.
  7. Prinzbach, H.; Wahl, F.; Weiler, A.; Landenberer, P.; Wörth, J.; Scott, L. T.; Gelmont, M.; Olevano, D.; Sommer, F.; Issendorff, B. von. Chem. Eur. J. 2006, 12, 6268. https://doi.org/10.1002/chem.200501611
  8. Okamoto, Y. Chem. Phys. Lett. 2003, 368, 224. https://doi.org/10.1016/S0009-2614(02)01797-9
  9. Zhang, C.; Sun, W.; Cao, Z. J. Chem. Phys. 2007, 126, 144306. https://doi.org/10.1063/1.2716642
  10. Lee, J.; Lee, C.; Park, S. S.; Lee, K. H. Bull. Korean Chem. Soc. 2011, 32, 277. https://doi.org/10.5012/bkcs.2011.32.1.277
  11. Moran, D.; Simmonett, A. C.; Leach III, F. E.; Allen, W. D.; Schleyer, P. v. R.; Schaefer III, H. F. J. Am. Chem. Soc. 2006, 128, 9342. https://doi.org/10.1021/ja0630285
  12. An, Y.-P.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Wang, D.-H. J. Phys. Chem. C 2009, 113, 15756. https://doi.org/10.1021/jp904202c
  13. Irikura, K. K. J. Phys. Chem. A 2008, 112, 983. https://doi.org/10.1021/jp710372p
  14. Zhang, C.-Y.; Wu, H.-S.; Jiao, H. J. Mol. Model 2007, 13, 499. https://doi.org/10.1007/s00894-007-0169-8
  15. Beck, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  16. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. A 1988, 37, 785.
  17. Stephen, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623. https://doi.org/10.1021/j100096a001
  18. Herteing, R. H.; Koch, W. Chem. Phys. Lett. 1997, 268, 345. https://doi.org/10.1016/S0009-2614(97)00207-8
  19. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  20. Frisch, M. J. et al. A Gaussian 03 B.04, Gaussian, Inc., Pittsburgh, PA, 2003.
  21. Clark, T. R.; Koch, R. The Chemist's Electronic Book of Orbitals; Springer-Verlag: Berlin, 1999.
  22. Hudson, B. S.; Allis, D. G.; Parker, S. F.; Ramirez-Cuesta, A. J.; Herman, H.; Prinzbach, H. J. Phys. Chem. A 2005, 109, 3418. https://doi.org/10.1021/jp0503213
  23. Wahl, F.; Weiler, A.; Landenberger, P.; Sackers, E.; Voss, T.; Hass, A.; Lieb, M.; Hunkler, D.; Worth, J.; Knothe, L.; Prinzbach, H. Chem. Eur. J. 2006, 12, 6255. https://doi.org/10.1002/chem.200501618
  24. Sackers, E.; Oβwald, T.; Weber, K.; Keller, M.; Hunkler, D.; Wahl, F.; Wörth, J.; Knothe, L.; Prinzbach, H. Chem. Eur. J. 2006, 12, 6242. https://doi.org/10.1002/chem.200501609
  25. Bond, A. J. Phys. Chem. 1964, 68, 441. https://doi.org/10.1021/j100785a001
  26. Lee, S.; Suh, Y.; Hwang, Y. G.; Lee, K. H. Bull. Korean Chem. Soc. 2011, 32, 3372. https://doi.org/10.5012/bkcs.2011.32.9.3372

Cited by

  1. Regioisomers: Hybrid DFT B3LYP Study vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2403
  2. Fullerene Adducts with Low Anisotropy of Polarizability are More Efficient Electron Acceptors for Organic Solar Cells. The Minimum Anisotropy Hypothesis for Efficient Isomer-Free Fullerene-Adduct Photovoltaics vol.120, pp.43, 2016, https://doi.org/10.1021/acs.jpcc.6b09341
  3. Five Regioisomers of Dimethyl Dodecahedrane Derivatives: A Hybrid DFT B3LYP Study vol.2017, pp.2090-9071, 2017, https://doi.org/10.1155/2017/5494038
  4. ) number of different addends vol.25, pp.2, 2017, https://doi.org/10.1080/1536383X.2016.1255203
  5. Modeling the structural and reactivity properties of hydrazono methyl-4H-chromen-4-one derivatives-wavefunction-dependent properties, molecular docking, and dynamics simulation studies vol.27, pp.6, 2012, https://doi.org/10.1007/s00894-021-04800-6