DOI QR코드

DOI QR Code

Facile Regiocontrolled Three-Step Synthesis of Poly-Substituted Furans, Pyrroles, and Thiophenes: Consecutive Michael Addition of Methyl Cyanoacetate to α,β-Enone, CuI-Mediated Aerobic Oxidation, and Acid-Catalyzed Paal-Knorr Synthesis

  • Kim, Se-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lim, Jin-Woo (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lim, Cheol-Hee (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Kim, Jae-Nyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Received : 2011.12.06
  • Accepted : 2011.12.19
  • Published : 2012.02.20

Abstract

An efficient synthesis of poly-substituted furans, pyrroles, and thiophenes was carried out in a regiocontrolled manner via a three-step process; (i) conjugate addition of methyl cyanoacetate derivatives to ${\alpha}$,${\beta}$-enones, (ii) CuI-mediated aerobic oxidation, and (iii) Paal-Knorr type synthesis of five-membered heterocycles.

Keywords

References

  1. Kim, S. H.; Kim, K. H.; Kim, J. N. Adv. Synth. Catal. 2011, 353, 3335-3339. https://doi.org/10.1002/adsc.201100431
  2. Sanchez- Larios, E.; Thai, K.; Bilodeau, F.; Gravel, M. Org. Lett. 2011, 13, 4942-4945. https://doi.org/10.1021/ol202040b
  3. Steward, K. M.; Johnson, J. S. Org. Lett. 2011, 13, 2426-2429. https://doi.org/10.1021/ol200649u
  4. Aginagalde, M.; Bello, T.; Masdeu, C.; Vara, Y.; Arrieta, A.; Cossio, F. P. J. Org. Chem. 2010, 75, 7435-7438. https://doi.org/10.1021/jo101388x
  5. Cossio Mora, F. P.; Zubia Olascoaga, A.; Vara Salazar, Y. I.; San Sebastian Larzabal, E.; Otaegui Ansa, D.; Masdeu Margalef, M. del C.; Aldaba Arevalo, E. PCT Int. Appl. 2011, WO 2011/039353 (Chem. Abstr. 2011, 154: 409822).
  6. Amarnath, V.; Amarnath, K. J. Org. Chem. 1995, 60, 301-307. https://doi.org/10.1021/jo00107a006
  7. Minetto, G.; Raveglia, L. F.; Sega, A.; Taddei, M. Eur. J. Org. Chem. 2005, 5277-5288.
  8. Suthiwangcharoen, N.; Stephens, C. E. ARKIVOC 2006, xvi, 122-127.
  9. Alcaide, B.; Casarrubios, L.; Dominguez, G.; Retamosa, A.; Sierra, M. A. Tetrahedron 1996, 52, 13215-13226. https://doi.org/10.1016/0040-4020(96)00796-X
  10. Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.; Wetterau, L. A.; Graham, D. G. J. Org. Chem. 1991, 56, 6924- 6931. https://doi.org/10.1021/jo00024a040
  11. Banik, B. K.; Samajdar, S.; Banik, I. J. Org. Chem. 2004, 69, 213-216. https://doi.org/10.1021/jo035200i
  12. Chochois, H.; Sauthier, M.; Maerten, E.; Castanet, Y.; Mortreux, A. Tetrahedron 2006, 62, 11740-11746. https://doi.org/10.1016/j.tet.2006.09.035
  13. Bharadwaj, A. R.; Scheidt, K. A. Org. Lett. 2004, 6, 2465- 2468. https://doi.org/10.1021/ol049044t
  14. Quiclet-Sire, B.; Thevenot, I.; Zard, S. Z. Tetrahedron Lett. 1995, 36, 9469-9470. https://doi.org/10.1016/0040-4039(95)02001-2
  15. Biava, M.; Porretta, G. C.; Poce, G.; De Logu, A.; Meleddu, R.; De Rossi, E.; Manetti, F.; Botta, M. Eur. J. Med. Chem. 2009, 44, 4734-4738. https://doi.org/10.1016/j.ejmech.2009.06.005
  16. Biava, M.; Porretta, G. C.; Poce, G.; Supino, S.; Forli, S.; Rovini, M.; Cappelli, A.; Manetti, F.; Botta, M.; Sautebin, L.; Rossi, A.; Pergola, C.; Ghelardini, C.; Vivoli, E.; Makovec, F.; Anzellotti, P.; Patrignani, P.; Anzini, M. J. Med. Chem. 2007, 50, 5403-5411. https://doi.org/10.1021/jm0707525
  17. Kim, S. H.; Kim, S. H.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2009, 50, 5744-5747. https://doi.org/10.1016/j.tetlet.2009.07.140
  18. Kim, J. M.; Lee, S.; Kim, S. H.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2008,29, 2215-2220. https://doi.org/10.5012/bkcs.2008.29.11.2215
  19. Lee, H. S.; Kim, J. M.; Kim, J. N. Tetrahedron Lett. 2007, 48, 4119-4122. https://doi.org/10.1016/j.tetlet.2007.04.022
  20. Lee, K. Y.; Gowrisankar, S.; Lee, Y. J.; Kim, J. N. Tetrahedron 2006, 62, 8798-8804. https://doi.org/10.1016/j.tet.2006.06.093
  21. Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 6480-6483. https://doi.org/10.1016/j.tetlet.2009.09.012
  22. Clement, J. A.; Mohanakrishnan, A. K. Tetrahedron 2010, 66, 2340-2350. https://doi.org/10.1016/j.tet.2010.01.111
  23. Wang, G.; Guan, Z.; Tang, R.; He, Y. Synth. Commun. 2010, 40, 370-377. https://doi.org/10.1080/00397910902978049
  24. De, S. K. Synth. Commun. 2008, 38, 803-809. https://doi.org/10.1080/00397910701821051
  25. Thompson, B. B.; Montgomery, J. Org. Lett. 2011, 13, 3289-3291 https://doi.org/10.1021/ol201133n
  26. Dorr, A. A.; Lubell, W. D. Tetrahedron Lett. 2011, 52, 2159-2161. https://doi.org/10.1016/j.tetlet.2010.11.089
  27. McLeod, M.; Boudreault, N.; Leblanc, Y. J. Org. Chem. 1996, 61, 1180-1183. https://doi.org/10.1021/jo9518260
  28. Hansford, K. A.; Guarin, S. A. P.; Skene, W. G.; Lubell, W. D. J. Org. Chem. 2005, 70, 7996-8000. https://doi.org/10.1021/jo0510888
  29. Tomimori, Y.; Okujima, T.; Yano, T.; Mori, S.; Ono, N.; Yamada, H.; Uno, H. Tetrahedron 2011, 67, 3187-3193. https://doi.org/10.1016/j.tet.2011.03.016
  30. Rausaria, S.; Kamadulski, A.; Rath, N. P.; Bryant, L.; Chen, Z.; Salvemini, D.; Neumann, W. L. J. Am. Chem. Soc. 2011, 133, 4200-4203. https://doi.org/10.1021/ja110427e
  31. Jones, G. B.; Mathews, J. E. Tetrahedron 1997, 53, 14599-14614. https://doi.org/10.1016/S0040-4020(97)00991-5
  32. Mundle, S. O. C.; Kluger, R. J. Am. Chem. Soc. 2009, 131, 11674-11675. https://doi.org/10.1021/ja905196n
  33. Mundle, S. O. C.; Opinska, L. G.; Kluger, R.; Dicks, A. P. J. Chem. Educ. 2011, 88, 1004-1006. https://doi.org/10.1021/ed100793r
  34. Zhang, X. H.; Geng, Z. Y.; Wang, Y. C. Sci. China Chem. 2011, 54, 762-768. https://doi.org/10.1007/s11426-011-4265-3
  35. Zhao, L.-B.; Guan, Z.-H.; Han, Y.; Xie, Y.-X.; He, S.; Liang, Y.-M. J. Org. Chem. 2007, 72, 10276-10278. https://doi.org/10.1021/jo7019465
  36. Arrieta, A.; Otaegui, D.; Zubia, A.; Cossio, F. P.; Diaz-Ortiz, A.; de la Hoz, A.; Herrero, M. A.; Prieto, P.; Foces-Foces, C.; Pizarro, J. L.; Arriortua, M. I. J. Org. Chem. 2007, 72, 4313-4322. https://doi.org/10.1021/jo062672z
  37. Mallais, T.; Moradei, O.; Ajamian, A.; Tessier, P.; Smil, D.; Frechette, S.; Machaalani, R.; Leit, S.; Beaulieu, P.; Deziel, R.; Mancuso, J. PCT Int. Appl. 2009, WO 2009/055917 (Chem. Abstr. 2009, 150: 494855).
  38. Herrero, M. T.; Tellitu, I.; Dominguez, E.; Hernandez, S.; Moreno, I.; SanMartin, R. Tetrahedron 2002, 58, 8581-8589. https://doi.org/10.1016/S0040-4020(02)00903-1

Cited by

  1. Protonated Carbonic Acid and Reactive Intermediates in the Acidic Decarboxylation of Indolecarboxylic Acids vol.77, pp.15, 2012, https://doi.org/10.1021/jo301032f
  2. ]fluorene Derivatives vol.355, pp.7, 2013, https://doi.org/10.1002/adsc.201300107
  3. γ-Halo-enones: A Method for their Synthesis from Arylacyl Halides and Their Application to the Preparation of Five-Membered Ring Heterocycles vol.79, pp.6, 2014, https://doi.org/10.1021/jo5001274
  4. Tandem catalytic oxidative deacetylation of acetoacetic esters and heteroaromatic cyclizations vol.13, pp.9, 2015, https://doi.org/10.1039/C4OB02441A
  5. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal–Knorr followed by an indium-mediated reaction vol.14, pp.1, 2016, https://doi.org/10.1039/C5OB02101D
  6. One-Pot Synthesis of 5-Hydroxypyrrolin-2-one Derivatives from Modified Morita-Baylis-Hillman Adducts via a Consecutive CuI-Mediated Aerobic Oxidation, Allylic Iodination, Hydration of Nitrile, and Lac vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.2079
  7. OBO-Protected Pyruvates as Reagents for the Synthesis of Functionalized Heteroaromatic Compounds vol.20, pp.13, 2012, https://doi.org/10.1021/acs.orglett.8b01614
  8. Cyclization of Vinylketene Dithioacetals: A Synthetic Strategy for Substituted Thiophenes vol.363, pp.1, 2012, https://doi.org/10.1002/adsc.202001001
  9. Synthesis of Arylfurans by Organic‐Solvent‐Free Method Using Phosphoric Acid as a Solvent and Catalyst vol.6, pp.36, 2012, https://doi.org/10.1002/slct.202103038