DOI QR코드

DOI QR Code

Quantum-chemical Investigation of Substituted s-Tetrazine Derivatives as Energetic Materials

  • Ghule, Vikas D. (Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad) ;
  • Sarangapani, Radhakrishnan (High Energy Materials Research Laboratory (HEMRL)) ;
  • Jadhav, Pandurang. M. (High Energy Materials Research Laboratory (HEMRL)) ;
  • Tewari, Surya. P. (Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad)
  • Received : 2011.08.02
  • Accepted : 2011.12.13
  • Published : 2012.02.20

Abstract

s-Tetrazine is the essential candidate of many energetic compounds due to its high nitrogen content, enthalpy of formation and thermal stability. The present study explores the design of s-tetrazine derivatives in which different $-NO_2$, $-NH_2$ and $-N_3$ substituted azoles are attached to the tetrazine ring via C-N linkage. The density functional theory (DFT) is used to predict the geometries, heats of formation (HOFs) and other energetic properties. The predicted results show that azide group plays a very important role in increasing HOF values of the s-tetrazine derivatives. The densities for designed molecules were predicted by using the crystal packing calculations. The introduction of $-NO_2$ group improves the density as compared to $-N_3$, and $-NH_2$ groups and hence the detonation performance. Bond dissociation energy analysis and insensitivity correlations revealed that amino derivatives are better candidates considering insensitivity and stability.

Keywords

References

  1. Katritzky, A. R. Handbook of Heterocyclic Chemistry; Pergamon Press: 1986.
  2. Saracoglu, N. Tetrahedron 2007, 63, 4199. https://doi.org/10.1016/j.tet.2007.02.051
  3. Spanget-Larsen, J.; Thulstrup, E. W.; Waluk, J. Chem. Phys. 2000, 254, 135. https://doi.org/10.1016/S0301-0104(00)00022-7
  4. Gleiter, R.; Schehlmann, V.; Spanget-Larsen, J.; Fischer, H.; Neugebauer, F. A. J. Org. Chem. 1988, 53, 5756. https://doi.org/10.1021/jo00259a027
  5. Qing, Z.; Audebert, P.; Clavier, G.; Miomandre, F.; Tang, J.; Vu, T. T.; Renault, R. M. J. Electroanalytical Chem. 2009, 632, 39. https://doi.org/10.1016/j.jelechem.2009.03.021
  6. Kaim, W. Coord. Chem. Rev. 2002, 230, 126.
  7. Chavez, D. E.; Gilardi, R. D.; Hiskey, M. A. Angew. Chem. Int. Ed. 2000, 39, 1791. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1791::AID-ANIE1791>3.0.CO;2-9
  8. Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D. J. Am. Chem. Soc. 2005, 127, 12537. https://doi.org/10.1021/ja0509735
  9. Saikia, A.; Sivabalan, R.; Polke, B. G.; Gore, G. M.; Singh, A.; Rao, A. S.; Sikder, A. K. J. Hazard. Mater. 2009, 170, 306. https://doi.org/10.1016/j.jhazmat.2009.04.095
  10. Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987.
  11. Hamasaki, A.; Ducray, R.; Boger, D. L. J. Org. Chem. 2006, 71, 185. https://doi.org/10.1021/jo051832o
  12. Novak, Z.; Bostai, B.; Csekei, M.; Lorincz, K.; Kotschy, A. Heterocycles 2003, 60, 2653. https://doi.org/10.3987/COM-03-9875
  13. Farago, J.; Novak, Z.; Schlosser, G.; Csampai, A.; Kotschy, A. Tetrahedron 2004, 60, 1991. https://doi.org/10.1016/j.tet.2004.01.013
  14. Novak, Z.; Kotschy, A. Org. Lett. 2003, 5, 3495. https://doi.org/10.1021/ol035312w
  15. Chavez, D. E.; Parrish, D. A. J. Heterocycl. Chem. 2009, 46, 88. https://doi.org/10.1002/jhet.7
  16. Chavez, D. E.; Tappan, B. C.; Hiskey, M. A.; Son, S. F.; Harry, H.; Montoya, D.; Hagelberg, S. Propell. Explos. Pyrotech. 2005, 30, 412. https://doi.org/10.1002/prep.200500033
  17. Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. Angew. Chem. Int. Ed. 2004, 43, 5658. https://doi.org/10.1002/anie.200460708
  18. Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Thermochimica Acta 2002, 384, 229. https://doi.org/10.1016/S0040-6031(01)00798-5
  19. Ye, C.; Gao, H.; Boatz, J. A.; Drake, G. W.; Twamley, B.; Shreeve, J. M. Angew. Chem. Int. Ed. 2006, 45, 7262. https://doi.org/10.1002/anie.200602778
  20. Petrie, M. A.; Sheehy, J. A.; Boatz, J. A.; Rasul, G.; Prakash, G. K. S.; Olah, G. A.; Christe, K. O. J. Am. Chem. Soc. 1997, 119, 8802. https://doi.org/10.1021/ja9714189
  21. Gaussian 03, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.
  22. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  23. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  24. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
  25. Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A 2005, 109, 934. https://doi.org/10.1021/jp045071p
  26. Ju, X. H.; Wang, X.; Bei, F. L. J. Comput. Chem. 2005, 26, 1263. https://doi.org/10.1002/jcc.20263
  27. Zhang, J.; Xiao, H. M.; Gong, X. D. J. Phys. Org. Chem. 2001, 14, 583. https://doi.org/10.1002/poc.404
  28. Zhang, J.; Xiao, H. M.; Xiao, J. J. Int. J. Quantum Chem. 2002, 86, 305. https://doi.org/10.1002/qua.1092
  29. Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H. J. Phys. Chem. A 2006, 110, 5929. https://doi.org/10.1021/jp0575557
  30. Wei, T.; Zhu, W. H.; Zhang, X. W.; Li, Y. F.; Xiao, H. M. J. Phys. Chem. A 2009, 113, 9404. https://doi.org/10.1021/jp902295v
  31. Aston, J. G.; Siller, C. W.; Messerly, G. H. J. Am. Chem. Soc. 1937, 59, 1743. https://doi.org/10.1021/ja01288a054
  32. Knobel, Y. K.; Miroshnichenko, E. A.; Lebedev, Y. A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1971, 425.
  33. Zaheeruddin, M.; Lodhi, Z. H. Phys. Chem. (Peshawar Pak.) 1991, 10, 111.
  34. Jimenez, P.; Roux, M. V.; Turrion, C. J. Chem. Thermodyn. 1989, 21, 759. https://doi.org/10.1016/0021-9614(89)90060-8
  35. Balepin, A. A.; Lebedev, V. P.; Miroshnichenko, E. A.; Koldobskii, G. I.; Ostovskii, V. A.; Larionov, B. P.; Gidaspov, B. V.; Lebedev, Yu. A. Svoistva Veshchestv Str. Mol. 1977, 93.
  36. Karfunkel, H. R.; Wu, Z. J.; Burkhard, A.; Rihs, G.; Sinnreich, D.; Burger, H. M.; Stanek, J. Acta Crystallogr. Sect. B 1996, 52, 555. https://doi.org/10.1107/S0108768195017174
  37. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897. https://doi.org/10.1021/j100389a010
  38. Baur, W. H.; Kassner, D. Acta Crystallogr. Sect. B 1992, 48, 356. https://doi.org/10.1107/S0108768191014726
  39. Belsky, V. K.; Zorkii, P. M. Acta Crystallogr. Sect. A 1977, 33, 1004. https://doi.org/10.1107/S0567739477002393
  40. Mondal, T.; Saritha, B.; Ghanta, S.; Roy, T. K.; Mahapatra, S.; Durga Prasad, M. J. Mol. Struct. (THEOCHEM) 2009, 897, 42. https://doi.org/10.1016/j.theochem.2008.11.013
  41. Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23. https://doi.org/10.1063/1.1667908
  42. Turker, L.; Atalar, T.; Gumus, S.; Camur, Y. J. Hazard. Mater. 2009, 167, 440. https://doi.org/10.1016/j.jhazmat.2008.12.134
  43. Shao, J.; Cheng, X.; Yang, X. J. Mol. Struct. (THEOCHEM) 2005, 755, 127. https://doi.org/10.1016/j.theochem.2005.08.008
  44. Fan, X. W.; Ju, X. H.; Xiao, Q. Y.; Xiao, H. M. J. Hazard. Mater. 2008, 151, 255. https://doi.org/10.1016/j.jhazmat.2007.05.075
  45. Badders, N. R.; Wei, C.; Aldeeb, A. A.; Rogers, W. J.; Mannan, M. S. J. Energ. Mater. 2006, 24, 17. https://doi.org/10.1080/07370650500374326
  46. Ghule, V. D.; Jadhav, P. M.; Patil, R. S.; Radhakrishnan, S.; Soman, T. J. Phys. Chem. A 2010, 114, 498. https://doi.org/10.1021/jp9071839
  47. Ghule, V. D.; Radhakrishnan, S.; Jadhav, P. M.; Tewari, S. P. Chemical Papers, 2011, 65, 380. https://doi.org/10.2478/s11696-011-0002-9
  48. Ghule, V. D.; Radhakrishnan, S.; Jadhav, P. M.; Tewari, S. P. J. Mol. Model. 2011, 17, 1507. https://doi.org/10.1007/s00894-010-0848-8
  49. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Org. Lett. 2004, 6, 2889. https://doi.org/10.1021/ol049076g
  50. Materials Studio 4.1, Accelrys Inc., San Diego, CA 2004.
  51. Li, J.; Huang, Y.; Dong, H. Propell. Explos. Pyrotech. 2004, 29, 231. https://doi.org/10.1002/prep.200400052
  52. Mader, C. L. In Organic Energetic Compounds, Nova Science Publishers: Commack, NY, 1996.
  53. Fan, X. W.; Ju, X. H.; Xiao, H. M. J. Hazard. Mater. 2008, 156, 342. https://doi.org/10.1016/j.jhazmat.2007.12.024
  54. Murray, J. S.; Concha, M. C.; Politzer, P. Mol. Phys. 2009, 107, 89. https://doi.org/10.1080/00268970902744375
  55. Ghule, V. D.; Radhakrishnan, S.; Jadhav, P. M. Struct. Chem. 2011, 22, 775. https://doi.org/10.1007/s11224-011-9755-6
  56. Qiu, L.; Gong, X. D.; Zheng, J.; Xiao, H. M. J. Hazard. Mater. 2009, 166, 931. https://doi.org/10.1016/j.jhazmat.2008.11.099
  57. Xu, X. J.; Zhu, W. H.; Xiao, H. M. J. Phys. Chem. B 2007, 111, 2090. https://doi.org/10.1021/jp066833e
  58. Kamlet, M. J.; Adolph, H. G. Propell. Explos. Pyrotech. 1979, 4, 30. https://doi.org/10.1002/prep.19790040204
  59. Bliss, D. E.; Christian, S. L.; Wilson, W. S. J. Energ. Mater. 1991, 9, 319. https://doi.org/10.1080/07370659108018631

Cited by

  1. Accurate Prediction of Enthalpies of Formation of Organic Azides by Combining G4 Theory Calculations with an Isodesmic Reaction Scheme vol.117, pp.31, 2013, https://doi.org/10.1021/jp404484q
  2. Theoretical study of the heats of formation, detonation properties, and bond dissociation energies of substituted bis-1,2,4-triazole compounds vol.24, pp.4, 2018, https://doi.org/10.1007/s00894-018-3626-7
  3. Calculation of enthalpies of formation and band gaps of polymeric binders vol.4, pp.62, 2012, https://doi.org/10.1039/c4ra02847c