References
- Katritzky, A. R. Handbook of Heterocyclic Chemistry; Pergamon Press: 1986.
- Saracoglu, N. Tetrahedron 2007, 63, 4199. https://doi.org/10.1016/j.tet.2007.02.051
- Spanget-Larsen, J.; Thulstrup, E. W.; Waluk, J. Chem. Phys. 2000, 254, 135. https://doi.org/10.1016/S0301-0104(00)00022-7
- Gleiter, R.; Schehlmann, V.; Spanget-Larsen, J.; Fischer, H.; Neugebauer, F. A. J. Org. Chem. 1988, 53, 5756. https://doi.org/10.1021/jo00259a027
- Qing, Z.; Audebert, P.; Clavier, G.; Miomandre, F.; Tang, J.; Vu, T. T.; Renault, R. M. J. Electroanalytical Chem. 2009, 632, 39. https://doi.org/10.1016/j.jelechem.2009.03.021
- Kaim, W. Coord. Chem. Rev. 2002, 230, 126.
- Chavez, D. E.; Gilardi, R. D.; Hiskey, M. A. Angew. Chem. Int. Ed. 2000, 39, 1791. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1791::AID-ANIE1791>3.0.CO;2-9
- Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D. J. Am. Chem. Soc. 2005, 127, 12537. https://doi.org/10.1021/ja0509735
- Saikia, A.; Sivabalan, R.; Polke, B. G.; Gore, G. M.; Singh, A.; Rao, A. S.; Sikder, A. K. J. Hazard. Mater. 2009, 170, 306. https://doi.org/10.1016/j.jhazmat.2009.04.095
- Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987.
- Hamasaki, A.; Ducray, R.; Boger, D. L. J. Org. Chem. 2006, 71, 185. https://doi.org/10.1021/jo051832o
- Novak, Z.; Bostai, B.; Csekei, M.; Lorincz, K.; Kotschy, A. Heterocycles 2003, 60, 2653. https://doi.org/10.3987/COM-03-9875
- Farago, J.; Novak, Z.; Schlosser, G.; Csampai, A.; Kotschy, A. Tetrahedron 2004, 60, 1991. https://doi.org/10.1016/j.tet.2004.01.013
- Novak, Z.; Kotschy, A. Org. Lett. 2003, 5, 3495. https://doi.org/10.1021/ol035312w
- Chavez, D. E.; Parrish, D. A. J. Heterocycl. Chem. 2009, 46, 88. https://doi.org/10.1002/jhet.7
- Chavez, D. E.; Tappan, B. C.; Hiskey, M. A.; Son, S. F.; Harry, H.; Montoya, D.; Hagelberg, S. Propell. Explos. Pyrotech. 2005, 30, 412. https://doi.org/10.1002/prep.200500033
- Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. Angew. Chem. Int. Ed. 2004, 43, 5658. https://doi.org/10.1002/anie.200460708
- Chapman, R. D.; Wilson, W. S.; Fronabarger, J. W.; Merwin, L. H.; Ostrom, G. S. Thermochimica Acta 2002, 384, 229. https://doi.org/10.1016/S0040-6031(01)00798-5
- Ye, C.; Gao, H.; Boatz, J. A.; Drake, G. W.; Twamley, B.; Shreeve, J. M. Angew. Chem. Int. Ed. 2006, 45, 7262. https://doi.org/10.1002/anie.200602778
- Petrie, M. A.; Sheehy, J. A.; Boatz, J. A.; Rasul, G.; Prakash, G. K. S.; Olah, G. A.; Christe, K. O. J. Am. Chem. Soc. 1997, 119, 8802. https://doi.org/10.1021/ja9714189
- Gaussian 03, Revision A.1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T. Jr.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.
- Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
- Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200. https://doi.org/10.1016/0009-2614(89)87234-3
- Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A 2005, 109, 934. https://doi.org/10.1021/jp045071p
- Ju, X. H.; Wang, X.; Bei, F. L. J. Comput. Chem. 2005, 26, 1263. https://doi.org/10.1002/jcc.20263
- Zhang, J.; Xiao, H. M.; Gong, X. D. J. Phys. Org. Chem. 2001, 14, 583. https://doi.org/10.1002/poc.404
- Zhang, J.; Xiao, H. M.; Xiao, J. J. Int. J. Quantum Chem. 2002, 86, 305. https://doi.org/10.1002/qua.1092
- Xu, X. J.; Xiao, H. M.; Ju, X. H.; Gong, X. D.; Zhu, W. H. J. Phys. Chem. A 2006, 110, 5929. https://doi.org/10.1021/jp0575557
- Wei, T.; Zhu, W. H.; Zhang, X. W.; Li, Y. F.; Xiao, H. M. J. Phys. Chem. A 2009, 113, 9404. https://doi.org/10.1021/jp902295v
- Aston, J. G.; Siller, C. W.; Messerly, G. H. J. Am. Chem. Soc. 1937, 59, 1743. https://doi.org/10.1021/ja01288a054
- Knobel, Y. K.; Miroshnichenko, E. A.; Lebedev, Y. A. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1971, 425.
- Zaheeruddin, M.; Lodhi, Z. H. Phys. Chem. (Peshawar Pak.) 1991, 10, 111.
- Jimenez, P.; Roux, M. V.; Turrion, C. J. Chem. Thermodyn. 1989, 21, 759. https://doi.org/10.1016/0021-9614(89)90060-8
- Balepin, A. A.; Lebedev, V. P.; Miroshnichenko, E. A.; Koldobskii, G. I.; Ostovskii, V. A.; Larionov, B. P.; Gidaspov, B. V.; Lebedev, Yu. A. Svoistva Veshchestv Str. Mol. 1977, 93.
- Karfunkel, H. R.; Wu, Z. J.; Burkhard, A.; Rihs, G.; Sinnreich, D.; Burger, H. M.; Stanek, J. Acta Crystallogr. Sect. B 1996, 52, 555. https://doi.org/10.1107/S0108768195017174
- Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897. https://doi.org/10.1021/j100389a010
- Baur, W. H.; Kassner, D. Acta Crystallogr. Sect. B 1992, 48, 356. https://doi.org/10.1107/S0108768191014726
- Belsky, V. K.; Zorkii, P. M. Acta Crystallogr. Sect. A 1977, 33, 1004. https://doi.org/10.1107/S0567739477002393
- Mondal, T.; Saritha, B.; Ghanta, S.; Roy, T. K.; Mahapatra, S.; Durga Prasad, M. J. Mol. Struct. (THEOCHEM) 2009, 897, 42. https://doi.org/10.1016/j.theochem.2008.11.013
- Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys. 1968, 48, 23. https://doi.org/10.1063/1.1667908
- Turker, L.; Atalar, T.; Gumus, S.; Camur, Y. J. Hazard. Mater. 2009, 167, 440. https://doi.org/10.1016/j.jhazmat.2008.12.134
- Shao, J.; Cheng, X.; Yang, X. J. Mol. Struct. (THEOCHEM) 2005, 755, 127. https://doi.org/10.1016/j.theochem.2005.08.008
- Fan, X. W.; Ju, X. H.; Xiao, Q. Y.; Xiao, H. M. J. Hazard. Mater. 2008, 151, 255. https://doi.org/10.1016/j.jhazmat.2007.05.075
- Badders, N. R.; Wei, C.; Aldeeb, A. A.; Rogers, W. J.; Mannan, M. S. J. Energ. Mater. 2006, 24, 17. https://doi.org/10.1080/07370650500374326
- Ghule, V. D.; Jadhav, P. M.; Patil, R. S.; Radhakrishnan, S.; Soman, T. J. Phys. Chem. A 2010, 114, 498. https://doi.org/10.1021/jp9071839
- Ghule, V. D.; Radhakrishnan, S.; Jadhav, P. M.; Tewari, S. P. Chemical Papers, 2011, 65, 380. https://doi.org/10.2478/s11696-011-0002-9
- Ghule, V. D.; Radhakrishnan, S.; Jadhav, P. M.; Tewari, S. P. J. Mol. Model. 2011, 17, 1507. https://doi.org/10.1007/s00894-010-0848-8
- Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Org. Lett. 2004, 6, 2889. https://doi.org/10.1021/ol049076g
- Materials Studio 4.1, Accelrys Inc., San Diego, CA 2004.
- Li, J.; Huang, Y.; Dong, H. Propell. Explos. Pyrotech. 2004, 29, 231. https://doi.org/10.1002/prep.200400052
- Mader, C. L. In Organic Energetic Compounds, Nova Science Publishers: Commack, NY, 1996.
- Fan, X. W.; Ju, X. H.; Xiao, H. M. J. Hazard. Mater. 2008, 156, 342. https://doi.org/10.1016/j.jhazmat.2007.12.024
- Murray, J. S.; Concha, M. C.; Politzer, P. Mol. Phys. 2009, 107, 89. https://doi.org/10.1080/00268970902744375
- Ghule, V. D.; Radhakrishnan, S.; Jadhav, P. M. Struct. Chem. 2011, 22, 775. https://doi.org/10.1007/s11224-011-9755-6
- Qiu, L.; Gong, X. D.; Zheng, J.; Xiao, H. M. J. Hazard. Mater. 2009, 166, 931. https://doi.org/10.1016/j.jhazmat.2008.11.099
- Xu, X. J.; Zhu, W. H.; Xiao, H. M. J. Phys. Chem. B 2007, 111, 2090. https://doi.org/10.1021/jp066833e
- Kamlet, M. J.; Adolph, H. G. Propell. Explos. Pyrotech. 1979, 4, 30. https://doi.org/10.1002/prep.19790040204
- Bliss, D. E.; Christian, S. L.; Wilson, W. S. J. Energ. Mater. 1991, 9, 319. https://doi.org/10.1080/07370659108018631
Cited by
- Accurate Prediction of Enthalpies of Formation of Organic Azides by Combining G4 Theory Calculations with an Isodesmic Reaction Scheme vol.117, pp.31, 2013, https://doi.org/10.1021/jp404484q
- Theoretical study of the heats of formation, detonation properties, and bond dissociation energies of substituted bis-1,2,4-triazole compounds vol.24, pp.4, 2018, https://doi.org/10.1007/s00894-018-3626-7
- Calculation of enthalpies of formation and band gaps of polymeric binders vol.4, pp.62, 2012, https://doi.org/10.1039/c4ra02847c