DOI QR코드

DOI QR Code

Hydrothermal Synthesis of Nanosized Sulfated Zirconia as an Efficient and Reusable Catalyst for Esterification of Acetic Acid with n-Butanol

  • Yu, Shengjian (School of Chemical and Material Engineering, Jiangnan University) ;
  • Jiang, Pingping (School of Chemical and Material Engineering, Jiangnan University) ;
  • Dong, Yuming (School of Chemical and Material Engineering, Jiangnan University) ;
  • Zhang, Pingbo (School of Chemical and Material Engineering, Jiangnan University) ;
  • Zhang, Yue (School of Chemical and Material Engineering, Jiangnan University) ;
  • Zhang, Weijie (School of Chemical and Material Engineering, Jiangnan University)
  • Received : 2011.09.30
  • Accepted : 2011.12.08
  • Published : 2012.02.20

Abstract

A kind of nanosized sulfated zirconia was prepared by a hydrothermal method, and full characterized by XRD, TEM, BET, TGA, and FTIR. Its catalytic activity was evaluated in the esterification reactions, including the testing of the catalytic reusability and the optimization of reaction conditions. The obtained catalyst was revealed to be highly efficient solid catalyst for the esterification of acetic acid with n-butanol, presenting the advantages of high conversion and selectivity, easy recovery, and steady reusability.

Keywords

References

  1. Peters, T. A.; Benes, N. E.; Holmen, A.; Keurentjes, J. T. F. Appl. Catal. A-Gen. 2006, 297, 182. https://doi.org/10.1016/j.apcata.2005.09.006
  2. Altiokka, M. R.; Citak, A. Appl. Catal. A-Gen. 2003, 239, 141. https://doi.org/10.1016/S0926-860X(02)00381-2
  3. Elings, J. A.; Downing, R. S.; Sheldon, R. A. Eur. J. Org. Chem. 1999, 837.
  4. Patel, S.; Purohit, N.; Patel, A. J. Mol. Catal. A-Chem. 2003, 192, 195. https://doi.org/10.1016/S1381-1169(02)00416-8
  5. Furuta, S.; Matsuhashi, H.; Arata, K. Catal. Commun. 2004, 5, 721. https://doi.org/10.1016/j.catcom.2004.09.001
  6. Hino, M.; Takasaki, S.; Furuta, S.; Matsuhashi, H.; Arata, K. Appl. Catal. A-Gen. 2007, 321, 147. https://doi.org/10.1016/j.apcata.2007.01.044
  7. Yadav, G. D.; Kundu, B. Can. J. Chem. Eng. 2001, 79, 805. https://doi.org/10.1002/cjce.5450790516
  8. Hu, X. T.; Zhou, Z.; Sun, D. F.; Wang, Y. T., Zhang, Z. B. Catal Lett 2009, 133, 90. https://doi.org/10.1007/s10562-009-0159-9
  9. Garg, S.; Soni, K.; Kumaran, G. M.; Bal, R.; Gora-Marek, K.; Gupta, J. K.; Sharma, L. D.; Dhar, G. M. Catal Today 2009, 141, 125. https://doi.org/10.1016/j.cattod.2008.03.021
  10. Wang, J. A.; Valenzuela, M. A.; Salmones, J.; Vazquez, A.; Garcia-Ruiz, A.; Bokhimi, X. Catal Today 2001, 68, 21. https://doi.org/10.1016/S0920-5861(01)00319-4
  11. Busto, M.; Shimizu, K.; Vera, C. R.; Grau, J. M.; Pieck, C. L.; D'Amato, M. A.; Causa, M. T.; Tovar, M. Appl. Catal. A-Gen. 2008, 348, 173. https://doi.org/10.1016/j.apcata.2008.06.029
  12. Hayashi, H.; Ueda, A.; Suino, A.; Hiro, Y.; Hakuta, Y. J Solid State Chem. 2009, 182, 2985. https://doi.org/10.1016/j.jssc.2009.08.013
  13. Meng. Z. Y.; Zhou, R. Chinese J. Catal. 1980.
  14. Melero, J. A.; van Grieken, R.; Morales, G.; Nuno, V. Catal. Commun. 2004, 5, 131. https://doi.org/10.1016/j.catcom.2003.12.007
  15. Mishra, M. K.; Tyagi, B.; Jasra, R. V. Ind. Eng. Chem. Res. 2003, 42, 5727. https://doi.org/10.1021/ie030099t
  16. Perez, J.; Perez, E.; del Vas, B.; Garcia, L.; Serrano, J. L. Thermochim Acta 2006, 443, 231. https://doi.org/10.1016/j.tca.2006.02.003
  17. Song, X.; Sayari, A. Catalysis Reviews 1996, 38, 329. https://doi.org/10.1080/01614949608006462

Cited by

  1. S2O8 2−/Al–O–MCM-41 catalysts for the esterification of acetic acid with n-butanol: influences of the preparation conditions on catalytic performances vol.109, pp.2, 2013, https://doi.org/10.1007/s11144-013-0566-1
  2. Effect of Sulfation on Zirconia-Pillared Montmorillonite to the Catalytic Activity in Microwave-Assisted Citronellal Conversion vol.2014, pp.1687-8078, 2014, https://doi.org/10.1155/2014/950190
  3. Combined Zr and S XANES Analysis on S–ZrO2/MWCNT Solid Acid Catalyst vol.57, pp.6-9, 2014, https://doi.org/10.1007/s11244-013-0226-8
  4. Effect of calcination on nanoscale zirconia produced by high temperature hydrolysis vol.51, pp.5, 2015, https://doi.org/10.1134/S2070205115050214
  5. Nano-Sized and -Crystalline Sulfated Zirconia Solid Acid Catalysts for Organic Synthesis vol.757, pp.1662-9752, 2013, https://doi.org/10.4028/www.scientific.net/MSF.757.69
  6. Effect of calcination temperature on the physicochemical and catalytic properties of SZSBA-15 catalyst in the production of monopalmitin vol.205, pp.4, 2018, https://doi.org/10.1080/00986445.2017.1404460
  7. Preparation and Characterization of 3Y-ZrO2 Composite Ceramics vol.281, pp.1662-9779, 2018, https://doi.org/10.4028/www.scientific.net/SSP.281.189
  8. A Kinetic Investigation of Triacetin Methanolysis and Assessment of the Stability of a Sulfated Zirconium Oxide Catalyst vol.95, pp.7, 2018, https://doi.org/10.1002/aocs.12085
  9. From Zirconium Nanograins to Zirconia Nanoneedles vol.6, pp.None, 2012, https://doi.org/10.1038/srep33282
  10. Simple but efficient synthesis of novel substituted benzimidazoles over ZrO2-Al2O3 vol.46, pp.18, 2012, https://doi.org/10.1080/00397911.2016.1215468
  11. Low-temperature metastable tetragonal zirconia nanoparticles (NpMTZ) synthesized from local zircon by a modified sodium carbonate sintering method vol.54, pp.4, 2012, https://doi.org/10.1007/s41779-018-0193-4
  12. Hydrocracking of LDPE Plastic Waste into Liquid Fuel over Sulfated Zirconia from a Commercial Zirconia Nanopowder vol.35, pp.1, 2012, https://doi.org/10.13005/ojc/350113
  13. Hydrothermal preparation of a platinum-loaded sulphated nanozirconia catalyst for the effective conversion of waste low density polyethylene into gasoline-range hydrocarbons vol.9, pp.71, 2019, https://doi.org/10.1039/c9ra08834b