References
- Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
- Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
- Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
- Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
- Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
- Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
- Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
- Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
- Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708-714. https://doi.org/10.1002/kin.20605
- Castro, E. A. Millan, D.; Aguayo, R.; Compodonico, P. R.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 687-693. https://doi.org/10.1002/kin.20598
- Castro, E. A.; Acevedo, R.; Santos, J. G. J. Phys. Org. Chem. 2011, 24, 603-610. https://doi.org/10.1002/poc.1814
- Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2010, 23, 176-180.
- Castro, E. A.; Aliaga. M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
- Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
- Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
- Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 2357-2360.
- Oh, H. K.; Lee, H. Bull. Korean Chem. Soc. 2010, 31, 475-478. https://doi.org/10.5012/bkcs.2010.31.02.475
- Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 1897- 1901. https://doi.org/10.5012/bkcs.2011.32.6.1897
- Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 31, 1793-1796.
- Moon, D. H.; Seong, M. H.; Kyong, J. B.; Lee, Y.; Lee, Y. W. Bull. Korean Chem. Soc. 2011, 32, 2413-2417. https://doi.org/10.5012/bkcs.2011.32.7.2413
- Choi, S. H.; Seong, M. H.; Lee, Y. W.; Kyoun, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2011, 32, 1268-1272. https://doi.org/10.5012/bkcs.2011.32.4.1268
- Su, Z.; Lee, H. W.; Kim, C. K. Org. Biomol. Chem. 2011, 9, 6402-6409. https://doi.org/10.1039/c1ob05642e
- Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474-479. https://doi.org/10.1002/poc.1788
- Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2339-2344. https://doi.org/10.5012/bkcs.2011.32.7.2339
- Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709-712. https://doi.org/10.5012/bkcs.2011.32.2.709
- Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
- Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
- Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bea, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
- Um, I. H.; Km, E. H.; Kang, J. S. Org. Biomol. Chem. 2011, 9, 8062-8067. https://doi.org/10.1039/c1ob06137b
- Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
- Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
- Um, I. H.; Kim, E. H.; Im, L. R.; Mishima, M. Bull. Korean Chem. Soc. 2010, 31, 2593- 2597. https://doi.org/10.5012/bkcs.2010.31.9.2593
- Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
- Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
- Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
- Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
- Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
- Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
- Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
- Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am.Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
- Andres, G. O.; Granados, A. M.; Rossi, R. H. J. Org. Chem. 2001, 66, 7653-7657. https://doi.org/10.1021/jo010499v
- Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975. https://doi.org/10.1021/ja00185a029
- Pregel, M.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
- Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
- Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
- Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
- Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
- Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry; University Science Books: Sausalito, U. S. A., 2006; pp 500-502.
- Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, U. S. A., 1998; p 445.
- Page, M. I.; Williams, A. Organic & Bioorganic Mechanisms; Longman: Singapore, 1997; pp 179-183.
- Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
- Davies, A. G. Perkin 1 2000, 1997-2010.
- Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493. https://doi.org/10.1021/ar9500877
- Suh, J. Acc. Chem. Res. 1992, 25, 273-279. https://doi.org/10.1021/ar00019a001
- Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877. https://doi.org/10.1021/ic980205x
- Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
- Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
- Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
- Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
- Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
- Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon J. G. J. Chem. Soc. Chem. Commun. 1984, 162-163.
- Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
- Buncel, E.; Pregel, M. J. J. Chem. Soc. Chem. Commun. 1989, 1566-1567.
- Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439. https://doi.org/10.1139/v08-178
- Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468- 1475. https://doi.org/10.1039/b501537e
- Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
- Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
- Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
- Um, I. H.; Seo, J. A; Mishima, M. Chem. Eur. J. 2011, 17, 3021-3027. https://doi.org/10.1002/chem.201002692
- Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang K. Y.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
- Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
- Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
- Lee, J. I.; Kang, J. S.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3543-3548. https://doi.org/10.5012/bkcs.2010.31.12.3543
- Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
- Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
- Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
- Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
- Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-2610. https://doi.org/10.1021/jo00163a040
- Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
- Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
- Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
- Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113.
Cited by
- Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
- Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
- Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1525
- -4-Nitrophenyl Phenylphosphonothioate with Alkali-Metal Ethoxides vol.86, pp.6, 2013, https://doi.org/10.1246/bcsj.20130015
- Alkali-Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Picolinate with Alkali Metal Ethoxides: Effect of Modification of Nonleaving Group from Benzoyl to Picolinyl on Reactivity and Transition State Structure vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1506
- Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2269
- A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2971
- Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Benzoates with Potassium Ethoxide in Anhydrous Ethanol: Reaction Mechanism and Role of K+ Ion vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.177
- Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-Benzoates with Potassium Ethoxide: Reaction Mechanism and Role of K+ Ion vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.225
- Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol vol.35, pp.8, 2012, https://doi.org/10.5012/bkcs.2014.35.8.2438