DOI QR코드

DOI QR Code

Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl

  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kang, Ji-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Chae-Won (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University) ;
  • Lee, Jae-In (Department of Chemistry and Plant Resources Research Institute, Duksung Women's University)
  • Received : 2011.11.23
  • Accepted : 2011.12.08
  • Published : 2012.02.20

Abstract

A kinetic study is reported on nucleophilic displacement reactions of benzyl 2-pyridyl carbonate 6 with alkalimetal ethoxides, EtOM (M = Li, Na, and K), in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of pseudo-firstorder rate constant $k_{obsd}$ vs. [EtOM] curve upward, a typical phenomenon reported previously for alkaline ethanolysis of esters in which alkali-metal ions behave as a Lewis-acid catalyst. The kobsd value for the reaction of 6 with a fixed EtOK concentration decreases rapidly upon addition of 18-crown-6-ether (18C6), a complexing agent for $K^+$ ion up to [18C6]/[EtOK] = 1.0 and then remains constant thereafter, indicating that the catalytic effect exerted by K+ ion disappears in the presence of excess 18C6. The reactivity of EtOM towards 6 increases in the order $EtO^-$ < EtOLi < EtONa < EtOK, which is contrasting to the reactivity order reported for the corresponding reactions of 2-pyridyl benzoate 4, i.e., $EtO^-$ < EtOK < EtONa < EtOLi. Besides, 6 is 1.7 and 3.5 times more reactive than 4 towards dissociated $EtO^-$ and ion-paired EtOK, respectively. The reactivity difference and the contrasting metal-ion selectivity are discussed in terms of electronic effects and transition-state structures.

Keywords

References

  1. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  3. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Singapore, 1997; Chapter 7.
  4. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  5. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  6. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970. https://doi.org/10.1021/ja00463a032
  7. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980. https://doi.org/10.1021/ja00463a033
  8. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824-3829. https://doi.org/10.1021/ja00766a027
  9. Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708-714. https://doi.org/10.1002/kin.20605
  10. Castro, E. A. Millan, D.; Aguayo, R.; Compodonico, P. R.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 687-693. https://doi.org/10.1002/kin.20598
  11. Castro, E. A.; Acevedo, R.; Santos, J. G. J. Phys. Org. Chem. 2011, 24, 603-610. https://doi.org/10.1002/poc.1814
  12. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2010, 23, 176-180.
  13. Castro, E. A.; Aliaga. M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  14. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  15. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
  16. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 2357-2360.
  17. Oh, H. K.; Lee, H. Bull. Korean Chem. Soc. 2010, 31, 475-478. https://doi.org/10.5012/bkcs.2010.31.02.475
  18. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 32, 1897- 1901. https://doi.org/10.5012/bkcs.2011.32.6.1897
  19. Koh, H. J.; Kang, S. J. Bull. Korean Chem. Soc. 2011, 31, 1793-1796.
  20. Moon, D. H.; Seong, M. H.; Kyong, J. B.; Lee, Y.; Lee, Y. W. Bull. Korean Chem. Soc. 2011, 32, 2413-2417. https://doi.org/10.5012/bkcs.2011.32.7.2413
  21. Choi, S. H.; Seong, M. H.; Lee, Y. W.; Kyoun, J. B.; Kevill, D. N. Bull. Korean Chem. Soc. 2011, 32, 1268-1272. https://doi.org/10.5012/bkcs.2011.32.4.1268
  22. Su, Z.; Lee, H. W.; Kim, C. K. Org. Biomol. Chem. 2011, 9, 6402-6409. https://doi.org/10.1039/c1ob05642e
  23. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2011, 24, 474-479. https://doi.org/10.1002/poc.1788
  24. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2339-2344. https://doi.org/10.5012/bkcs.2011.32.7.2339
  25. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 709-712. https://doi.org/10.5012/bkcs.2011.32.2.709
  26. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444. https://doi.org/10.1021/jo048227q
  27. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172. https://doi.org/10.1021/jo049812u
  28. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bea, S. K. J. Org. Chem. 2003, 68, 5180-5185. https://doi.org/10.1021/jo034190i
  29. Um, I. H.; Km, E. H.; Kang, J. S. Org. Biomol. Chem. 2011, 9, 8062-8067. https://doi.org/10.1039/c1ob06137b
  30. Um, I. H.; Bae, A. R. J. Org. Chem. 2011, 76, 7510-7515. https://doi.org/10.1021/jo201387h
  31. Um, I. H.; Im, L. R.; Kim, E. H.; Shin, J. H. Org. Biomol. Chem. 2010, 8, 3801-3806. https://doi.org/10.1039/c0ob00031k
  32. Um, I. H.; Kim, E. H.; Im, L. R.; Mishima, M. Bull. Korean Chem. Soc. 2010, 31, 2593- 2597. https://doi.org/10.5012/bkcs.2010.31.9.2593
  33. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  34. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  35. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073-3078. https://doi.org/10.1021/jo900219t
  36. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. https://doi.org/10.1021/jo070171n
  37. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720. https://doi.org/10.1021/jo061308x
  38. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  39. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
  40. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am.Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  41. Andres, G. O.; Granados, A. M.; Rossi, R. H. J. Org. Chem. 2001, 66, 7653-7657. https://doi.org/10.1021/jo010499v
  42. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975. https://doi.org/10.1021/ja00185a029
  43. Pregel, M.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  44. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441. https://doi.org/10.1021/jo035854r
  45. Um, I. H.; Kim, E. H.; Lee, J. Y. J. Org. Chem. 2009, 74, 1212-1217. https://doi.org/10.1021/jo802446y
  46. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  47. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480. https://doi.org/10.1021/jo026339g
  48. Anslyn, E. V.; Dougherty, D. E. Modern Physical Organic Chemistry; University Science Books: Sausalito, U. S. A., 2006; pp 500-502.
  49. Carroll, F. A. Perspectives on Structure and Mechanism in Organic Chemistry; Brooks/Cole: New York, U. S. A., 1998; p 445.
  50. Page, M. I.; Williams, A. Organic & Bioorganic Mechanisms; Longman: Singapore, 1997; pp 179-183.
  51. Brown, R. S.; Neverov, A. A. Adv. Phys. Org. Chem. 2007, 42, 271-331. https://doi.org/10.1016/S0065-3160(07)42006-8
  52. Davies, A. G. Perkin 1 2000, 1997-2010.
  53. Williams, N. H.; Takasaki, B.; Wall, M.; Chin, J. Acc. Chem. Res. 1999, 32, 485-493. https://doi.org/10.1021/ar9500877
  54. Suh, J. Acc. Chem. Res. 1992, 25, 273-279. https://doi.org/10.1021/ar00019a001
  55. Suh, J.; Son, S. J.; Suh, M. P. Inorg. Chem. 1998, 37, 4872-4877. https://doi.org/10.1021/ic980205x
  56. Suh, J.; Kim, N.; Cho, H. S. Bioorg. Med. Chem. Lett. 1994, 4, 1889-1892. https://doi.org/10.1016/S0960-894X(01)80391-7
  57. Fife, T. H.; Chauffe, L. Bioorg. Chem. 2000, 28, 357-373. https://doi.org/10.1006/bioo.2000.1176
  58. Fife, T. H.; Bembi, R. J. Am. Chem. Soc. 1993, 115, 11358-11363. https://doi.org/10.1021/ja00077a039
  59. Fife, T. H.; Pujari, M. P. J. Am. Chem. Soc. 1990, 112, 5551-5557. https://doi.org/10.1021/ja00170a020
  60. Dunn, E. J.; Buncel, E. Can. J. Chem. 1989, 67, 1440-1448. https://doi.org/10.1139/v89-220
  61. Buncel, E.; Dunn, E. J.; Bannard, R. B.; Purdon J. G. J. Chem. Soc. Chem. Commun. 1984, 162-163.
  62. Pregel, M. J.; Dunn, E. J.; Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Chem. Soc. Rev. 1995, 24, 449-455. https://doi.org/10.1039/cs9952400449
  63. Buncel, E.; Pregel, M. J. J. Chem. Soc. Chem. Commun. 1989, 1566-1567.
  64. Koo, I. S.; Ali, D.; Yang, K.; Park, Y.; Esbata, A.; van Loon, G. W.; Buncel, E. Can. J. Chem. 2009, 87, 433-439. https://doi.org/10.1139/v08-178
  65. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468- 1475. https://doi.org/10.1039/b501537e
  66. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610. https://doi.org/10.1039/b314886f
  67. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167. https://doi.org/10.1039/b208408b
  68. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63. https://doi.org/10.1139/v02-202
  69. Um, I. H.; Seo, J. A; Mishima, M. Chem. Eur. J. 2011, 17, 3021-3027. https://doi.org/10.1002/chem.201002692
  70. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang K. Y.; Buncel, E. J. Org. Chem. 2008, 73, 923-930. https://doi.org/10.1021/jo702138h
  71. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016-3017.
  72. Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
  73. Lee, J. I.; Kang, J. S.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3543-3548. https://doi.org/10.5012/bkcs.2010.31.12.3543
  74. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  75. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  76. Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  77. Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  78. Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-2610. https://doi.org/10.1021/jo00163a040
  79. Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  80. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  81. Pechanec, V.; Kocian, O.; Zavada, J. Collect. Czech. Chem. Commun. 1982, 47, 3405-3411. https://doi.org/10.1135/cccc19823405
  82. Barthel, J.; Justice, J.-C.; Wachter, R. Z. Phys. Chem. 1973, 84, 100-113.

Cited by

  1. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate in Acetonitrile vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1547
  2. Kinetics and Reaction Mechanism of Aminolyses of Benzyl 2-Pyridyl Carbonate and t-Butyl 2-Pyridyl Carbonate: Effect of Nonleaving Group on Reactivity and Reaction Mechanism vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1551
  3. Metal-Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Thionobenzoate: Effects of Modification of Electrophilic Center from C=O to C=S vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1525
  4. -4-Nitrophenyl Phenylphosphonothioate with Alkali-Metal Ethoxides vol.86, pp.6, 2013, https://doi.org/10.1246/bcsj.20130015
  5. Alkali-Metal Ion Catalysis in Nucleophilic Substitution Reactions of 5-Nitro-8-quinolyl Picolinate with Alkali Metal Ethoxides: Effect of Modification of Nonleaving Group from Benzoyl to Picolinyl on Reactivity and Transition State Structure vol.35, pp.5, 2014, https://doi.org/10.5012/bkcs.2014.35.5.1506
  6. Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Me vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2269
  7. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2971
  8. Nucleophilic Substitution Reactions of Y-Substituted-Phenyl Benzoates with Potassium Ethoxide in Anhydrous Ethanol: Reaction Mechanism and Role of K+ Ion vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.177
  9. Kinetic Study on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted-Benzoates with Potassium Ethoxide: Reaction Mechanism and Role of K+ Ion vol.35, pp.1, 2012, https://doi.org/10.5012/bkcs.2014.35.1.225
  10. Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol vol.35, pp.8, 2012, https://doi.org/10.5012/bkcs.2014.35.8.2438