DOI QR코드

DOI QR Code

One-pot Synthesis of Benzimidazoles and Benzothiazoles in the Presence of Fe(HSO4)3 as a New and Efficient Oxidant

  • Eshghi, Hossein (Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad) ;
  • Rahimizadeh, Mohammad (Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad) ;
  • Shiri, Ali (Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad) ;
  • Sedaghat, Parisa (Department of Chemistry, School of Sciences, Ferdowsi University of Mashhad)
  • Received : 2011.09.05
  • Accepted : 2011.12.07
  • Published : 2012.02.20

Abstract

A series of substituted benzimidazoles and benzothiazoles were prepared through the one-pot reaction of ophenylenediamine and o-aminothiophenol with various aldehydes in the presence of ferric hydrogensulfate both in EtOH and water as solvent. The reactions proceed smoothly in excellent yield, high chemoselectivity and with an easy work-up.

Keywords

References

  1. Denny, W. A.; Rewcastle, G. W.; Baguley, B. C. J. Med. Chem. 1990, 33, 814. https://doi.org/10.1021/jm00164a054
  2. Fonseca, T.; Gigante, B.; Gilchrist, T. L. Tetrahedron 2001, 57, 1793. https://doi.org/10.1016/S0040-4020(00)01158-3
  3. Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1998, 41, 1252. https://doi.org/10.1021/jm970559i
  4. Roth, M.; Morningstar, M. L.; Boyer, P. L.; Hughes, S. H.; Buckheit, R. W., Michejda, C. J. J. Med. Chem. 1997, 40, 4199. https://doi.org/10.1021/jm970096g
  5. Kim, J. S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie, E. J. Med. Chem. 1996, 39, 992. https://doi.org/10.1021/jm950412w
  6. Zarrinmayeh, H.; Zimmerman, D. M.; Cantrell, B. E.; Schober, D. A.; Bruns, R. F. Bioorg. Med. Chem. Lett. 1999, 9, 647. https://doi.org/10.1016/S0960-894X(99)00082-7
  7. Zarrinmayeh, H.; Nunes, A.; Ornstein, P.; Zimmerman, D.; Arnold, B.; Schober, D.; Gackenheimer, S.; Bruns, R.; Hipskind, P.; Britton, T.; Cantrell, B.; Gehlert, D. J. Med. Chem. 1998, 41, 2709. https://doi.org/10.1021/jm9706630
  8. Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. J. Med. Chem. 1996, 39, 5228. https://doi.org/10.1021/jm960547h
  9. Bradshaw, T. D.; Wrigley, S.; Shi, D. F.; Schulz, R. J.; Paull, K. D.; Stevens, M. F. G. Br. J. Cancer 1998, 77, 745. https://doi.org/10.1038/bjc.1998.122
  10. Kashiyama, E.; Hutchinson, I.; Chua, M. S.; Stinson, S. F.; Phillips, L. R.; Kaur, G.; Sausville, E. A.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 1999, 42, 4172. https://doi.org/10.1021/jm990104o
  11. Hutchinson, I.; Chua, M. S.; Browne, H. L.; Trapani, V.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2001, 44, 1446. https://doi.org/10.1021/jm001104n
  12. Palmer, P. J.; Trigg, R. B.; Warrington, J. V. J. Med. Chem. 1971, 14, 248. https://doi.org/10.1021/jm00285a022
  13. Lau, C. K.; Dufresne, C.; Gareau, Y.; Zamboni, R.; Labelle, M.; Young, R. N.; Metters, K. M.; Rochette, C.; Sawyer, N.; Slipetz, D. M.; Charette, L.; Jones, T.; McAuliffe, M.; McFarlane, C.; Ford-Hutchinson, W. Bioorg. Med. Chem. 1995, 5, 1615. https://doi.org/10.1016/0960-894X(95)00265-U
  14. Chakraborti, A. K.; Selvam, C.; Kaur, G.; Bhagat, S. Synlett 2004, 851
  15. Lee, K. J.; Janda, K. D. Can. J. Chem. 2001, 79, 1556. https://doi.org/10.1139/v01-138
  16. Weidner-Wells, M. A.; Ohemeng, K. A.; Nguyen, V. N.; Fraga- Spano, S.; Macielag, M. J.; Werblood, H. M.; Foleno, B. D.; Webb, G. C.; Barrett, J. F.; Hlasta, D. J. Bioorg. Med. Chem. Lett. 2001, 11, 1545. https://doi.org/10.1016/S0960-894X(01)00024-5
  17. Yadagiri, B.; Lown, J. W. Synth. Commun. 1990, 20, 955. https://doi.org/10.1080/00397919008052798
  18. Harapanhalli, R. S.; McLaughlin, L. W.; Howell, R. W.; Rao, D. V.; Adelstein, S. J.; Kassis, A. I. J. Med. Chem. 1996, 39, 4804. https://doi.org/10.1021/jm9602672
  19. Bhatnagar, I.; George, M. V. Tetrahedron 1968, 24, 1293. https://doi.org/10.1016/0040-4020(68)88080-9
  20. Verner, E.; Katz, B. A.; Spencer, J. R.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.; Martelli, A.; Radika, K.; Rai, R.; She, M.; Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B.; Mackman, R. L. J. Med. Chem. 2001, 44, 2753. https://doi.org/10.1021/jm0100638
  21. Patzold, F.; Zeuner, F.; Heyer, T. H.; Niclas, H. J. Synth. Commun. 1992, 22, 281. https://doi.org/10.1080/00397919208021304
  22. Chikashita, H.; Nishida, S.; Miyazaki, M.; Morita, Y.; Itoh, K. Bull. Chem. Soc. Jpn. 1987, 60, 737. https://doi.org/10.1246/bcsj.60.737
  23. Stephens, F. F.; Bower, J. D. J. Chem. Soc. 1949, 2971. https://doi.org/10.1039/jr9490002971
  24. Beaulieu, P. L.; Hache, B.; Von Moos, E. Synthesis 2003, 1683.
  25. Bakavoli, M.; Rahimizadeh, M.; Eshghi, H.; Shiri, A.; Ebrahimpour, Z.; Takjoo, R. Bull. Korean Chem. Soc. 2010, 31, 949. https://doi.org/10.5012/bkcs.2010.31.04.949
  26. Rahimizadeh, M.; Bakhtiarpoor, Z.; Eshghi, H.; Pordel, M.; Rajabzadeh, G. Monat. Chem. 2009, 140, 1465. https://doi.org/10.1007/s00706-009-0205-8
  27. Rahimizadeh, M.; Bakavoli, M.; Shiri, A.; Eshghi, H. Bull. Korean Chem. Soc. 2009, 30, 1699. https://doi.org/10.5012/bkcs.2009.30.8.1699
  28. Rahimizadeh, M.; Bakavoli, M.; Shiri, A.; Eshghi, H.; Saberi, S. J. Chem. Res. 2008, 704.
  29. Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Eshghi, H.; Vaziri-Mehr, S.; Pordeli, P.; Nikpour, M. Heterocycl. Commun. 2011, 17, 49. https://doi.org/10.1515/hc.2011.009
  30. Eshghi, H.; Rahimizadeh, M.; Saberi, S. Catal. Commun. 2008, 9, 2460. https://doi.org/10.1016/j.catcom.2008.06.015
  31. Shingalapur, R. V.; Hosamani, K. M. Catal. Lett. 2010, 137, 63. https://doi.org/10.1007/s10562-010-0340-1
  32. Sharghi, H.; Asemani, O.; Khalifeh, R. Synth. Commun. 2008, 38, 1128. https://doi.org/10.1080/00397910701863657
  33. Speier, G.; Parkanyi, L. J. Org. Chem. 1986, 51, 218. https://doi.org/10.1021/jo00352a016
  34. Navarrete, G.; Moreno-Diaz, H.; Estrada-Soto, S.; Torres-Piedra, M. Synth. Commun. 2007, 37, 2815. https://doi.org/10.1080/00397910701473325
  35. Feitelson, E. J. Chem. Soc. 1952, 2389.
  36. Ouyang, J.; Ouyang, C.; Fujii, Y.; Nakano, Y.; Shoda, T.; Nagano, T. J. Heterocycl. Chem. 2004, 41, 359. https://doi.org/10.1002/jhet.5570410309
  37. Bahrami, K.; Khodaei, M. M.; Nejati, A. Green Chem. 2010, 12, 1237. https://doi.org/10.1039/c000047g
  38. Kim, J. S.; Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie E. J. Bioorg. Med. Chem. 1996, 4, 621. https://doi.org/10.1016/0968-0896(96)00047-8
  39. Ridley, H. F.; Spickett, R. G. W.; Timmis, G. M. J. Heterocycl. Chem. 1965, 2, 453. https://doi.org/10.1002/jhet.5570020424
  40. Mao, Z.; Wang, Z.; Li, J.; Song, X.; Luo, Y. Synth. Commun. 2010, 40, 1963. https://doi.org/10.1080/00397910903219328
  41. Azarifar, D.; Maleki, B.; Setayeshnazar, M. Phosphorus, Sulfur and Silicon 2009, 184, 2097. https://doi.org/10.1080/10426500802423933
  42. Deligeorgiev, T.; Kaloyanova, S.; Vasilev, A.; Vaquero, J. Phosphorus, Sulfur and Silicon 2010, 185, 2292. https://doi.org/10.1080/10426501003598648
  43. Balaji, S.; Umesh, R.; Jyotirling, R.; Ramrao, A. Bull. Korean Chem. Soc. 2010, 31, 2329. https://doi.org/10.5012/bkcs.2010.31.8.2329
  44. Abdollahi-Alibeik, M.; Poorirani, S. Phosphorus, Sulfur, and Silicon 2009, 184, 3182. https://doi.org/10.1080/10426500802705453
  45. Kirti, S.; Bapurao, B.; Shingare, M. S. Bull. Korean Chem. Soc. 2010, 31, 4981.
  46. Freinbichler, W.; Soliman, A.; Jameson, R. F.; Jameson, G. N. L.; Linert, W. Spectrochimica Acta, Part A: Mol. Biomol. Spect. 2009, 74, 30. https://doi.org/10.1016/j.saa.2009.04.017
  47. Bahrami, K.; Khodaei, M. M.; Kavianinia, I. Synthesis 2007, 547.
  48. Lin, S.; Yang, L. Tetrahedron Lett. 2005, 46, 4315. https://doi.org/10.1016/j.tetlet.2005.04.101
  49. Nagawade, R. R.; Shinde, D. B. Chin. Chem. Lett. 2006, 17, 453.
  50. Das, B.; Holla, H.; Srinivas, Y. Tetrahedron Lett. 2007, 48, 61. https://doi.org/10.1016/j.tetlet.2006.11.018
  51. Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 4823. https://doi.org/10.1016/j.tetlet.2006.05.052
  52. Mosslemin, M. H.; Fazlinia, A. Phosphorus, Sulfur, and Silicon 2010, 185, 2165. https://doi.org/10.1080/10426501003598630
  53. Bougrin, K.; Loupy, A.; Souflaoui, M. Tetrahedron 1998, 54, 8055. https://doi.org/10.1016/S0040-4020(98)00431-1

Cited by

  1. Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by silica sulfuric acid vol.39, pp.5, 2013, https://doi.org/10.1007/s11164-012-0739-y
  2. O aqueous system under ambient conditions at room temperature vol.28, pp.6, 2014, https://doi.org/10.1002/aoc.3145
  3. -aminothiophenol and its derivatives as versatile synthons vol.35, pp.5, 2014, https://doi.org/10.1080/17415993.2014.934245
  4. Dicationic Imidazolium Ionic Liquid/toluene Temperature-dependent Biphasic System vol.62, pp.2, 2014, https://doi.org/10.1002/jccs.201400298
  5. Preparation, characterization, and application of 1,1′-disulfo-[2,2′-bipyridine]-1,1′-diium chloride ionic liquid as an efficient catalyst for the synthesis of benzimidazole derivatives vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1852-x
  6. Samarium(III) triflate: a new catalyst for facile synthesis of benzothiazoles and benzoxazoles from carboxylic acids in aqueous media vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-014-1897-x
  7. A simple and eco-friendly process catalyzed by montmorillonite K-10, with air as oxidant, for synthesis of 2-substituted benzothiazoles vol.41, pp.8, 2015, https://doi.org/10.1007/s11164-014-1619-4
  8. A Novel Ionic Liquid Based on Imidazolium Cation as an Efficient and Reusable Catalyst for the One-pot Synthesis of Benzoxazoles, Benzthiazoles, Benzimidazoles and 2-Arylsubstituted Benzimidazoles vol.62, pp.5, 2015, https://doi.org/10.1002/jccs.201400372
  9. Trichloroisocyanuric Acid/Triphenylphosphine-Mediated Synthesis of Benzimidazoles, Benzoxazoles, and Benzothiazoles vol.68, pp.1, 2015, https://doi.org/10.1071/CH14037
  10. Iron-Based Imidazolium Salts as Versatile Catalysts for the Synthesis of Quinolines and 2- and 4-Allylanilines by Allylic Substitution of Alcohols vol.358, pp.18, 2016, https://doi.org/10.1002/adsc.201600315
  11. Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst vol.42, pp.2, 2016, https://doi.org/10.1007/s11164-015-2075-5
  12. Calcinized eggshell: an environmentally benign green catalyst for synthesis of 2-arylbenzothiazole derivatives vol.42, pp.7, 2016, https://doi.org/10.1007/s11164-016-2463-5
  13. In water–ultrasound-promoted synthesis of tetraketones and 2-substituted-1H-benzimidazoles catalyzed by BiOCl nanoparticles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2924-5
  14. Nanocomposite: A Heterogeneous and Recyclable Catalyst for the One-Pot Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles under Solvent-Free Conditions vol.64, pp.11, 2017, https://doi.org/10.1002/jccs.201700060
  15. under Ultrasound Irradiation vol.64, pp.1, 2016, https://doi.org/10.1002/jccs.201600200
  16. Photon-induced intramolecular charge transfer with the influence of D/A group and mode: optical physical properties and bio-imaging vol.1, pp.42, 2012, https://doi.org/10.1039/c3tc31506a
  17. In Situ Synthesis of 2-Phenylbenzimidazole as an Hydrogen Sulfide Corrosion Inhibitor of Carbon Steel vol.69, pp.12, 2012, https://doi.org/10.5006/0854
  18. An efficient synthesis of 2-substituted benzothiazoles in the presence of FeCl3/Montmorillonite K-10 under ultrasound irradiation vol.20, pp.2, 2012, https://doi.org/10.1016/j.ultsonch.2012.09.010
  19. Pd‐Catalyzed Reductive Carbonylation‐Ring Closure of Aryl Halides: A Direct Approach for Synthesis of Benzimidazoles vol.1, pp.15, 2012, https://doi.org/10.1002/slct.201600732
  20. 1,3,5-Trimethylpyrazolium chloride based ionogel as an efficient and reusable heterogeneous catalyst for the synthesis of benzimidazoles vol.128, pp.1, 2012, https://doi.org/10.1007/s12039-015-1000-1
  21. Overview on the recently developed thiazolyl heterocycles as useful therapeutic agents vol.191, pp.6, 2012, https://doi.org/10.1080/10426507.2015.1119143
  22. Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles vol.235, pp.None, 2016, https://doi.org/10.1016/j.jssc.2015.11.019
  23. Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction vol.27, pp.None, 2018, https://doi.org/10.5714/cl.2018.27.042
  24. Application of [PVP-SO3H] HSO4 as an Efficient Polymeric-Based Solid Acid Catalyst in the Synthesis of Some Benzimidazole Derivatives vol.52, pp.4, 2012, https://doi.org/10.1080/00304948.2020.1765654