References
- Denny, W. A.; Rewcastle, G. W.; Baguley, B. C. J. Med. Chem. 1990, 33, 814. https://doi.org/10.1021/jm00164a054
- Fonseca, T.; Gigante, B.; Gilchrist, T. L. Tetrahedron 2001, 57, 1793. https://doi.org/10.1016/S0040-4020(00)01158-3
- Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. J. Med. Chem. 1998, 41, 1252. https://doi.org/10.1021/jm970559i
- Roth, M.; Morningstar, M. L.; Boyer, P. L.; Hughes, S. H.; Buckheit, R. W., Michejda, C. J. J. Med. Chem. 1997, 40, 4199. https://doi.org/10.1021/jm970096g
- Kim, J. S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie, E. J. Med. Chem. 1996, 39, 992. https://doi.org/10.1021/jm950412w
- Zarrinmayeh, H.; Zimmerman, D. M.; Cantrell, B. E.; Schober, D. A.; Bruns, R. F. Bioorg. Med. Chem. Lett. 1999, 9, 647. https://doi.org/10.1016/S0960-894X(99)00082-7
- Zarrinmayeh, H.; Nunes, A.; Ornstein, P.; Zimmerman, D.; Arnold, B.; Schober, D.; Gackenheimer, S.; Bruns, R.; Hipskind, P.; Britton, T.; Cantrell, B.; Gehlert, D. J. Med. Chem. 1998, 41, 2709. https://doi.org/10.1021/jm9706630
- Kohara, Y.; Kubo, K.; Imamiya, E.; Wada, T.; Inada, Y.; Naka, T. J. Med. Chem. 1996, 39, 5228. https://doi.org/10.1021/jm960547h
- Bradshaw, T. D.; Wrigley, S.; Shi, D. F.; Schulz, R. J.; Paull, K. D.; Stevens, M. F. G. Br. J. Cancer 1998, 77, 745. https://doi.org/10.1038/bjc.1998.122
- Kashiyama, E.; Hutchinson, I.; Chua, M. S.; Stinson, S. F.; Phillips, L. R.; Kaur, G.; Sausville, E. A.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 1999, 42, 4172. https://doi.org/10.1021/jm990104o
- Hutchinson, I.; Chua, M. S.; Browne, H. L.; Trapani, V.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. G. J. Med. Chem. 2001, 44, 1446. https://doi.org/10.1021/jm001104n
- Palmer, P. J.; Trigg, R. B.; Warrington, J. V. J. Med. Chem. 1971, 14, 248. https://doi.org/10.1021/jm00285a022
- Lau, C. K.; Dufresne, C.; Gareau, Y.; Zamboni, R.; Labelle, M.; Young, R. N.; Metters, K. M.; Rochette, C.; Sawyer, N.; Slipetz, D. M.; Charette, L.; Jones, T.; McAuliffe, M.; McFarlane, C.; Ford-Hutchinson, W. Bioorg. Med. Chem. 1995, 5, 1615. https://doi.org/10.1016/0960-894X(95)00265-U
- Chakraborti, A. K.; Selvam, C.; Kaur, G.; Bhagat, S. Synlett 2004, 851
- Lee, K. J.; Janda, K. D. Can. J. Chem. 2001, 79, 1556. https://doi.org/10.1139/v01-138
- Weidner-Wells, M. A.; Ohemeng, K. A.; Nguyen, V. N.; Fraga- Spano, S.; Macielag, M. J.; Werblood, H. M.; Foleno, B. D.; Webb, G. C.; Barrett, J. F.; Hlasta, D. J. Bioorg. Med. Chem. Lett. 2001, 11, 1545. https://doi.org/10.1016/S0960-894X(01)00024-5
- Yadagiri, B.; Lown, J. W. Synth. Commun. 1990, 20, 955. https://doi.org/10.1080/00397919008052798
- Harapanhalli, R. S.; McLaughlin, L. W.; Howell, R. W.; Rao, D. V.; Adelstein, S. J.; Kassis, A. I. J. Med. Chem. 1996, 39, 4804. https://doi.org/10.1021/jm9602672
- Bhatnagar, I.; George, M. V. Tetrahedron 1968, 24, 1293. https://doi.org/10.1016/0040-4020(68)88080-9
- Verner, E.; Katz, B. A.; Spencer, J. R.; Allen, D.; Hataye, J.; Hruzewicz, W.; Hui, H. C.; Kolesnikov, A.; Li, Y.; Luong, C.; Martelli, A.; Radika, K.; Rai, R.; She, M.; Shrader, W.; Sprengeler, P. A.; Trapp, S.; Wang, J.; Young, W. B.; Mackman, R. L. J. Med. Chem. 2001, 44, 2753. https://doi.org/10.1021/jm0100638
- Patzold, F.; Zeuner, F.; Heyer, T. H.; Niclas, H. J. Synth. Commun. 1992, 22, 281. https://doi.org/10.1080/00397919208021304
- Chikashita, H.; Nishida, S.; Miyazaki, M.; Morita, Y.; Itoh, K. Bull. Chem. Soc. Jpn. 1987, 60, 737. https://doi.org/10.1246/bcsj.60.737
- Stephens, F. F.; Bower, J. D. J. Chem. Soc. 1949, 2971. https://doi.org/10.1039/jr9490002971
- Beaulieu, P. L.; Hache, B.; Von Moos, E. Synthesis 2003, 1683.
- Bakavoli, M.; Rahimizadeh, M.; Eshghi, H.; Shiri, A.; Ebrahimpour, Z.; Takjoo, R. Bull. Korean Chem. Soc. 2010, 31, 949. https://doi.org/10.5012/bkcs.2010.31.04.949
- Rahimizadeh, M.; Bakhtiarpoor, Z.; Eshghi, H.; Pordel, M.; Rajabzadeh, G. Monat. Chem. 2009, 140, 1465. https://doi.org/10.1007/s00706-009-0205-8
- Rahimizadeh, M.; Bakavoli, M.; Shiri, A.; Eshghi, H. Bull. Korean Chem. Soc. 2009, 30, 1699. https://doi.org/10.5012/bkcs.2009.30.8.1699
- Rahimizadeh, M.; Bakavoli, M.; Shiri, A.; Eshghi, H.; Saberi, S. J. Chem. Res. 2008, 704.
- Bakavoli, M.; Rahimizadeh, M.; Shiri, A.; Eshghi, H.; Vaziri-Mehr, S.; Pordeli, P.; Nikpour, M. Heterocycl. Commun. 2011, 17, 49. https://doi.org/10.1515/hc.2011.009
- Eshghi, H.; Rahimizadeh, M.; Saberi, S. Catal. Commun. 2008, 9, 2460. https://doi.org/10.1016/j.catcom.2008.06.015
- Shingalapur, R. V.; Hosamani, K. M. Catal. Lett. 2010, 137, 63. https://doi.org/10.1007/s10562-010-0340-1
- Sharghi, H.; Asemani, O.; Khalifeh, R. Synth. Commun. 2008, 38, 1128. https://doi.org/10.1080/00397910701863657
- Speier, G.; Parkanyi, L. J. Org. Chem. 1986, 51, 218. https://doi.org/10.1021/jo00352a016
- Navarrete, G.; Moreno-Diaz, H.; Estrada-Soto, S.; Torres-Piedra, M. Synth. Commun. 2007, 37, 2815. https://doi.org/10.1080/00397910701473325
- Feitelson, E. J. Chem. Soc. 1952, 2389.
- Ouyang, J.; Ouyang, C.; Fujii, Y.; Nakano, Y.; Shoda, T.; Nagano, T. J. Heterocycl. Chem. 2004, 41, 359. https://doi.org/10.1002/jhet.5570410309
- Bahrami, K.; Khodaei, M. M.; Nejati, A. Green Chem. 2010, 12, 1237. https://doi.org/10.1039/c000047g
- Kim, J. S.; Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie E. J. Bioorg. Med. Chem. 1996, 4, 621. https://doi.org/10.1016/0968-0896(96)00047-8
- Ridley, H. F.; Spickett, R. G. W.; Timmis, G. M. J. Heterocycl. Chem. 1965, 2, 453. https://doi.org/10.1002/jhet.5570020424
- Mao, Z.; Wang, Z.; Li, J.; Song, X.; Luo, Y. Synth. Commun. 2010, 40, 1963. https://doi.org/10.1080/00397910903219328
- Azarifar, D.; Maleki, B.; Setayeshnazar, M. Phosphorus, Sulfur and Silicon 2009, 184, 2097. https://doi.org/10.1080/10426500802423933
- Deligeorgiev, T.; Kaloyanova, S.; Vasilev, A.; Vaquero, J. Phosphorus, Sulfur and Silicon 2010, 185, 2292. https://doi.org/10.1080/10426501003598648
- Balaji, S.; Umesh, R.; Jyotirling, R.; Ramrao, A. Bull. Korean Chem. Soc. 2010, 31, 2329. https://doi.org/10.5012/bkcs.2010.31.8.2329
- Abdollahi-Alibeik, M.; Poorirani, S. Phosphorus, Sulfur, and Silicon 2009, 184, 3182. https://doi.org/10.1080/10426500802705453
- Kirti, S.; Bapurao, B.; Shingare, M. S. Bull. Korean Chem. Soc. 2010, 31, 4981.
- Freinbichler, W.; Soliman, A.; Jameson, R. F.; Jameson, G. N. L.; Linert, W. Spectrochimica Acta, Part A: Mol. Biomol. Spect. 2009, 74, 30. https://doi.org/10.1016/j.saa.2009.04.017
- Bahrami, K.; Khodaei, M. M.; Kavianinia, I. Synthesis 2007, 547.
- Lin, S.; Yang, L. Tetrahedron Lett. 2005, 46, 4315. https://doi.org/10.1016/j.tetlet.2005.04.101
- Nagawade, R. R.; Shinde, D. B. Chin. Chem. Lett. 2006, 17, 453.
- Das, B.; Holla, H.; Srinivas, Y. Tetrahedron Lett. 2007, 48, 61. https://doi.org/10.1016/j.tetlet.2006.11.018
- Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 4823. https://doi.org/10.1016/j.tetlet.2006.05.052
- Mosslemin, M. H.; Fazlinia, A. Phosphorus, Sulfur, and Silicon 2010, 185, 2165. https://doi.org/10.1080/10426501003598630
- Bougrin, K.; Loupy, A.; Souflaoui, M. Tetrahedron 1998, 54, 8055. https://doi.org/10.1016/S0040-4020(98)00431-1
Cited by
- Eco-friendly synthesis of 2-substituted benzothiazoles catalyzed by silica sulfuric acid vol.39, pp.5, 2013, https://doi.org/10.1007/s11164-012-0739-y
- O aqueous system under ambient conditions at room temperature vol.28, pp.6, 2014, https://doi.org/10.1002/aoc.3145
- -aminothiophenol and its derivatives as versatile synthons vol.35, pp.5, 2014, https://doi.org/10.1080/17415993.2014.934245
- Dicationic Imidazolium Ionic Liquid/toluene Temperature-dependent Biphasic System vol.62, pp.2, 2014, https://doi.org/10.1002/jccs.201400298
- Preparation, characterization, and application of 1,1′-disulfo-[2,2′-bipyridine]-1,1′-diium chloride ionic liquid as an efficient catalyst for the synthesis of benzimidazole derivatives vol.41, pp.10, 2015, https://doi.org/10.1007/s11164-014-1852-x
- Samarium(III) triflate: a new catalyst for facile synthesis of benzothiazoles and benzoxazoles from carboxylic acids in aqueous media vol.41, pp.11, 2015, https://doi.org/10.1007/s11164-014-1897-x
- A simple and eco-friendly process catalyzed by montmorillonite K-10, with air as oxidant, for synthesis of 2-substituted benzothiazoles vol.41, pp.8, 2015, https://doi.org/10.1007/s11164-014-1619-4
- A Novel Ionic Liquid Based on Imidazolium Cation as an Efficient and Reusable Catalyst for the One-pot Synthesis of Benzoxazoles, Benzthiazoles, Benzimidazoles and 2-Arylsubstituted Benzimidazoles vol.62, pp.5, 2015, https://doi.org/10.1002/jccs.201400372
- Trichloroisocyanuric Acid/Triphenylphosphine-Mediated Synthesis of Benzimidazoles, Benzoxazoles, and Benzothiazoles vol.68, pp.1, 2015, https://doi.org/10.1071/CH14037
- Iron-Based Imidazolium Salts as Versatile Catalysts for the Synthesis of Quinolines and 2- and 4-Allylanilines by Allylic Substitution of Alcohols vol.358, pp.18, 2016, https://doi.org/10.1002/adsc.201600315
- Synthesis of benzimidazole and quinoxaline derivatives using reusable sulfonated rice husk ash (RHA-SO3H) as a green and efficient solid acid catalyst vol.42, pp.2, 2016, https://doi.org/10.1007/s11164-015-2075-5
- Calcinized eggshell: an environmentally benign green catalyst for synthesis of 2-arylbenzothiazole derivatives vol.42, pp.7, 2016, https://doi.org/10.1007/s11164-016-2463-5
- In water–ultrasound-promoted synthesis of tetraketones and 2-substituted-1H-benzimidazoles catalyzed by BiOCl nanoparticles vol.43, pp.8, 2017, https://doi.org/10.1007/s11164-017-2924-5
- Nanocomposite: A Heterogeneous and Recyclable Catalyst for the One-Pot Synthesis of Benzimidazoles, Benzoxazoles and Benzothiazoles under Solvent-Free Conditions vol.64, pp.11, 2017, https://doi.org/10.1002/jccs.201700060
- under Ultrasound Irradiation vol.64, pp.1, 2016, https://doi.org/10.1002/jccs.201600200
- Photon-induced intramolecular charge transfer with the influence of D/A group and mode: optical physical properties and bio-imaging vol.1, pp.42, 2012, https://doi.org/10.1039/c3tc31506a
- In Situ Synthesis of 2-Phenylbenzimidazole as an Hydrogen Sulfide Corrosion Inhibitor of Carbon Steel vol.69, pp.12, 2012, https://doi.org/10.5006/0854
- An efficient synthesis of 2-substituted benzothiazoles in the presence of FeCl3/Montmorillonite K-10 under ultrasound irradiation vol.20, pp.2, 2012, https://doi.org/10.1016/j.ultsonch.2012.09.010
- Pd‐Catalyzed Reductive Carbonylation‐Ring Closure of Aryl Halides: A Direct Approach for Synthesis of Benzimidazoles vol.1, pp.15, 2012, https://doi.org/10.1002/slct.201600732
- 1,3,5-Trimethylpyrazolium chloride based ionogel as an efficient and reusable heterogeneous catalyst for the synthesis of benzimidazoles vol.128, pp.1, 2012, https://doi.org/10.1007/s12039-015-1000-1
- Overview on the recently developed thiazolyl heterocycles as useful therapeutic agents vol.191, pp.6, 2012, https://doi.org/10.1080/10426507.2015.1119143
- Anchoring of Cu(II) onto surface of porous metal-organic framework through post-synthesis modification for the synthesis of benzimidazoles and benzothiazoles vol.235, pp.None, 2016, https://doi.org/10.1016/j.jssc.2015.11.019
- Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction vol.27, pp.None, 2018, https://doi.org/10.5714/cl.2018.27.042
- Application of [PVP-SO3H] HSO4 as an Efficient Polymeric-Based Solid Acid Catalyst in the Synthesis of Some Benzimidazole Derivatives vol.52, pp.4, 2012, https://doi.org/10.1080/00304948.2020.1765654