DOI QR코드

DOI QR Code

Facile Preparation of Nanosilver-decorated MWNTs Using Silver Carbamate Complex and Their Polymer Composites

  • Park, Heon-Soo (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School) ;
  • Gong, Myoung-Seon (Department of Nanobiomedical Science & WCU Research Center, Dankook University Graduate School)
  • Received : 2011.09.19
  • Accepted : 2011.12.05
  • Published : 2012.02.20

Abstract

We successfully decorated multi-wall carbon nanotubes (MWNTs) with silver by reacting Ag-NPs with thiolfunctionalized MWNT-SH. Ag alkylcarbamate complex was used as an Ag precursor. Uniform Ag-NPs (5-10 nm) were effectively prepared by microwaving within 60 s using 1-amino-4-methylpiperazine (AMP), which acts as a reaction medium, reducing agent, and stabilizer. The MWNTs were functionalized with 2-aminoethanethiol. Exploiting the chemical affinity between thiol and Ag-NPs, Ag-MWNT nanohybrids were obtained by spontaneous chemical adsorption of MWNT-SH to Ag through Ag-S bonds. The Ag-S-MWNTs were characterized by TGA, XRD, and TEM to confirm that Ag-NPs were uniformly decorated onto the MWNTs. The Ag-S-MWNTs were then employed as conducting filler in epoxy resin to fabricate electrically conducting polymer composites. The electrical properties of the composites were measured and compared with that containing MWNT-SH. The electrical conductivity of composites containing 0.4 wt % Ag-S-MWNT was four orders of magnitude higher than those containing same content of MWNT-SH, confirming Ag-S-MWNT as an effective conducting filler.

Keywords

References

  1. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. J. Chem. Soc. Chem. Commun. 1994, 801.
  2. Wang, J. G.; Neoh, K. G.; Kang, E. T. J. Colloid Interface. Sci. 2001, 239, 78. https://doi.org/10.1006/jcis.2001.7576
  3. Khanna, P. K.; Gokhale, R.; Subbarao, V. V. V. S.; Vishwanath, A. K.; Das, B. K.; Satyanarayana, C. V. Mater. Chem. Phy. 2005, 92, 229. https://doi.org/10.1016/j.matchemphys.2005.01.016
  4. Li, Y.; El-Sayed, M. A. J. Phys. Chem. B 2001, 105, 8938. https://doi.org/10.1021/jp010904m
  5. Hong, H. K.; Gong, M. S.; Park, C. K. Bull. Korean Chem. Soc. 2009, 30, 2669.
  6. Hong, H. K.; Park, C. K.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 1252. https://doi.org/10.5012/bkcs.2010.31.5.1252
  7. Park, H. S.; Park, H. S.; Gong, M. S. Bull. Korean Chem. Soc. 2010, 31, 2575. https://doi.org/10.5012/bkcs.2010.31.9.2575
  8. Jeon, Y. M.; Cho, H. N.; Gong, M. S. Macromol. Res. 2009, 17, 2. https://doi.org/10.1007/BF03218592
  9. Lim, T. H.; Jeon, Y. M.; Gong, M. S. Polymer (Korea) 2009, 33, 33.
  10. Park, H. S.; Park, H. S.; Gong, M. S. Polymer (Korea) 2010, 34, 144.
  11. Park, H. S.; Park, H. S.; Gong, M. S. Macromol. Res. 2010, 18, 897. https://doi.org/10.1007/s13233-010-0913-2
  12. Park, H. S.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 273. https://doi.org/10.5012/bkcs.2011.32.1.273
  13. Hong, H. K.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 1583. https://doi.org/10.5012/bkcs.2011.32.5.1583
  14. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. Macromol. Res. 2008, 16, 308. https://doi.org/10.1007/BF03218522
  15. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong,M. S. Sens. Actuators B 2008, 133, 166. https://doi.org/10.1016/j.snb.2008.02.008
  16. Park, M. S.; Lim, T. H.; Jeon, Y. M.; Kim, J. G.; Joo, S. W.; Gong, M. S. J. Colloid Interface Sci. 2008, 321, 60. https://doi.org/10.1016/j.jcis.2008.01.053
  17. Park, H. S.; Hwang, J. Y.; Shin, U. S.; Kim, H. W.; Gong, M. S. Bull. Korean Chem. Soc. 2011, 32, 3581. https://doi.org/10.5012/bkcs.2011.32.10.3581
  18. Albonetti, S.; Blosi, M.; Gatti, F.; Migliori, A.; Ortolani, L.; Morandi, V.; Baldi, G.; Barzanti, A.; Donti, M. Studies in Surface Aci. Catalysis 2010, 175, 621. https://doi.org/10.1016/S0167-2991(10)75122-3
  19. Georgakilas, V.; Gournis, D.; Tzitzios, V.; Pasquato, L.; Guldi, D. M.; Prato, M. J. Mater. Chem. 2007, 17, 2679. https://doi.org/10.1039/b700857k
  20. Zanella, R.; Basiuk, E. V.; Santiago, P.; Basiuk, V. A.; Mireles, E.; Puente-Lee, I. J. Phys. Chem. B 2005, 109, 16290. https://doi.org/10.1021/jp0521454
  21. Kim B.; Sigmund, W. M. Langmuir 2004, 20, 8239. https://doi.org/10.1021/la049424n
  22. Chin, K. C.; Gohel, A.; Chen, W. Z.; Elim, H. I.; Ji, W. Chem. Phys. Lett. 2005, 409, 85. https://doi.org/10.1016/j.cplett.2005.04.092
  23. Wu, H. P.; Wu, X. J.; Ge, M. Y.; Zhang, G. Q.; Wang, Y. W.; Jiang, J. Compos. Sci. Techol. 2007, 67, 1182. https://doi.org/10.1016/j.compscitech.2006.05.010
  24. Xue, B.; Chen, P.; Hong, Q.; Lin, J.; Tan, K. L. J. Mater. Chem. 2001, 11, 2378. https://doi.org/10.1039/b100618p
  25. Guo, D. J.; Li, H. L. Carbon 2005, 43, 1259. https://doi.org/10.1016/j.carbon.2004.12.021
  26. Liu, Y.; Tang, J.; Chen, X.; Chen, W.; Pang, G. K. H.; Xin, J. H. Carbon 2006, 44, 381. https://doi.org/10.1016/j.carbon.2005.09.006
  27. Oh, S. D.; So, B. K.; Choi, S. H.; Gopalan, A.; Lee, K. P.; Yoon, K. R. et al. Mater. Lett. 2005, 59, 1121. https://doi.org/10.1016/j.matlet.2004.10.080
  28. Durgun, E.; Dag, S.; Bagci, V. M. K.; Gulseren, O.; Yildirim, T.; Ciraci, S. Phys. Rev. B 2003, 67, 201401. https://doi.org/10.1103/PhysRevB.67.201401
  29. Zamudio, A.; Elias, A. L.; Rodriguez-Manzo, J. A.; Lopez-Urias, F.; Rodriguez-Gattorno, G.; Lupo, F.; Ruhle, M.; Smith, D. J.; Terrons, H.; Diaz, D.; Terrones, M. Small 2006, 2, 346. https://doi.org/10.1002/smll.200500348
  30. Ajayan, P. M.; Iijima, S. Nature 1996, 361, 333. https://doi.org/10.1038/361333a0
  31. Ugarte, U.; Chatelain, A.; de Heer, W. A. Science 1996, 274, 1897. https://doi.org/10.1126/science.274.5294.1897
  32. Sun, M. L. Beijing: China Machine Press 2002, 115.
  33. Li, J.; Ma, P. C.; Chow, W. S.; To, C. K.; Tang, B. Z.; Kim, J. K. Adv. Funct. Mater. 2007, 17, 3207. https://doi.org/10.1002/adfm.200700065
  34. Buldum, A.; Lu, J. P. Phys. Rev. B 2001, 63, 161403-1. https://doi.org/10.1103/PhysRevB.63.161403
  35. Stadermann, M.; Papadakis, S. J.; Falvo, M. R.; Novak, J.; Snow, E.; Fu, Q. et al. Phys. Rev. B 2004, 69, 201402-1. https://doi.org/10.1103/PhysRevB.69.201402
  36. Liu, Z.; Shen, Z.; Zhu, T.; Hou, S.; Ying, L.; Shi, Z.; Gu, Z. Langmuir 2000, 16, 3569. https://doi.org/10.1021/la9914110
  37. Xin, F.; Li, L.; Composites: Part A 2011, 42, 961. https://doi.org/10.1016/j.compositesa.2011.03.024
  38. Ma, P. C.; Kim, J. K.; Tang, B. Z. Compos. Sci. Technol. 2007, 67, 2965. https://doi.org/10.1016/j.compscitech.2007.05.006
  39. Sandler, J. K. W.; Kirk, J. E.; Kinloch, I. A.; Shaffer, M. S. P.; Windle, A. H. Polymer 2003, 44, 5893. https://doi.org/10.1016/S0032-3861(03)00539-1
  40. Moisala, A.; Li, Q.; Kinloch, I. A.; Windle, A. H. Compos. Sci. Technol. 2006, 66, 1285. https://doi.org/10.1016/j.compscitech.2005.10.016

Cited by

  1. Engineering Nanostructures by Decorating Magnetic Nanoparticles onto Graphene Oxide Sheets to Shield Electromagnetic Radiations vol.7, pp.30, 2015, https://doi.org/10.1021/acsami.5b02703
  2. Preparation and characterization of multi-walled carbon nanotubes decorated with silver nanoparticles through ultraviolet irradiation reduction vol.31, pp.8, 2017, https://doi.org/10.1002/aoc.3666
  3. Preparation of Highly Stabilized Silver Nanopowders by the Thermal Reduction and Their Properties vol.33, pp.12, 2012, https://doi.org/10.5012/bkcs.2012.33.12.3987
  4. Easy Preparation of Nanosilver-Decorated Graphene Using Silver Carbamate by Microwave Irradiation and Their Properties vol.35, pp.8, 2012, https://doi.org/10.5012/bkcs.2014.35.8.2251
  5. A nanofilter composed of carbon nanotube-silver composites for virus removal and antibacterial activity improvement vol.42, pp.None, 2016, https://doi.org/10.1016/j.jes.2014.11.017
  6. Decoration of Carbon Nanotubes With Metal Nanoparticles: Recent Trends vol.46, pp.1, 2012, https://doi.org/10.1080/15533174.2014.900635
  7. Electrochemical Sensors for Heavy Metals Detection in Gracilaria corticata using Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode vol.74, pp.3, 2012, https://doi.org/10.1134/s106193481903002x