DOI QR코드

DOI QR Code

Studies on Printing Inks Containing Poly[2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene] as an Emissive Material for the Fabrication of Polymer Light-Emitting Diodes by Inkjet Printing

  • Kwon, Jae-Taek (Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University) ;
  • Eom, Seung-Hun (Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University) ;
  • Moon, Byung-Seuk (Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University) ;
  • Shin, Jin-Koog (Korea Printed Electronics Center, Korea Electronics Technology Institute) ;
  • Kim, Kyu-Sik (Material & Device Institute, Samsung Advanced Institute of Technology, Samsung Electronics) ;
  • Lee, Soo-Hyoung (Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University) ;
  • Lee, Youn-Sik (Division of Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University)
  • Received : 2011.08.10
  • Accepted : 2011.11.28
  • Published : 2012.02.20

Abstract

Three solvent systems, chlorobenzene (ink 1), chlorobenzene/o-dichlorobenzene (ink 2) and chlorobenzene/tetrahydronaphthalene (ink 3), were compared as printable inks for the fabrication of polymer light-emitting diodes (PLEDs) using poly[2-methoxy-5-(2-ethylhexyl-oxyl)-1,4-phenylenevinylene (MEH-PPV) as an emissive material and an inkjet printer (Fujifilm Dimatix DMP-2831). Ink 1 clogged the printer's nozzle and gave non-uniform film. Inks 2 and 3 were used to fabricate PLEDs with ITO/PEDOT:PSS/MEH-PPV/LiF/Al configurations. The best performance (turn-on voltage, 3.5 V; luminance efficiency, 0.17 cd/A; luminance, 1,800 cd/m) was obtained when ink 3 was used to form the emissive layer (thickness, 49 nm), attributable to the better morphology and suitable thickness of the MEH-PPV layer.

Keywords

References

  1. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Sturm, J. C. Appl. Phys. Lett. 1998, 72, 5.
  2. Aernouts, T.; Aleksandrov, T.; Girotto, C.; Genoe, J.; Poortmans, J. Appl. Phys. Lett. 2008, 92, 033306. https://doi.org/10.1063/1.2833185
  3. Lim, J. A.; Lee, W. H.; Lee, H. S.; Lee, J. H.; Park, Y. D.; Cho, K. Adv. Funct. Mater. 2008, 18, 229. https://doi.org/10.1002/adfm.200700859
  4. Villani, F.; Vacca, P.; Miscioscia, R.; Nenna, G.; Burrasca, G.; Fasolino, T.; Minarini, C.; della Sala, D. Macromol. Symp. 2009, 208, 101.
  5. Tekin, E.; Holder, E.; Kozodaev, D.; Schubert, U. S. Adv. Funct. Mater. 2007, 17, 277. https://doi.org/10.1002/adfm.200600049
  6. Inkjet printer DMP-2800 series User Manual, Fujifilm Dimatix, Inc.
  7. Oh, S.-H.; Na, S.-I.; Nah, Y.-C.; Vak, D.; Kim, S.-S.; Kim, D.-Y. Org. Electron. 2007, 8, 773. https://doi.org/10.1016/j.orgel.2007.06.011
  8. Korea thermophysical properties data bank (KDB), www.cheril.org/research/urb.
  9. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Nature 1997, 389, 827. https://doi.org/10.1038/39827
  10. Gans, B. J.; Schubert, U. S. Langmuir 2004, 20, 7789. https://doi.org/10.1021/la049469o
  11. Bhardwaj, R.; Fang, X.; Somasundaran, P.; Attinger, D. Langmuir 2010, 26, 7833. https://doi.org/10.1021/la9047227
  12. Kim, D.; Jeong, S.; Park, B. K.; Moon, J. Appl. Phys. Lett. 2006, 89, 264101. https://doi.org/10.1063/1.2424671
  13. Tekin, E.; Holder, E.; Marin, V.; Gans, B. J.; Schubert, U. S. Macromol. Rapid Commun. 2005, 26, 293. https://doi.org/10.1002/marc.200400507
  14. Tekin, E.; Gans, B. J.; Schubert, U. S. J. Mater. Chem. 2004, 14, 2627. https://doi.org/10.1039/b407478e
  15. Eom, S. H.; Senthilarasua, S.; Uthirakumar, P.; Yoon, S. C.; Lim, J.; Lee, C.; Lim, H. S.; Lee, J.; Lee, S.-H. Org. Electron. 2009, 10, 536. https://doi.org/10.1016/j.orgel.2009.01.015
  16. Eom, S. H.; Park, H.; Mujawar, S. H.; Yoon, S. C.; Kim, S.-S.; Na, S.-I.; Kang, S.-J.; Khim, D.; Kim, D.-Y.; Lee, S.-H. Org. Electron. 2010, 11, 1516. https://doi.org/10.1016/j.orgel.2010.06.007
  17. Wee, S.-K.; Oh, S.; Lee, J. Y.; Lee, Y.-S.; Chung, J. Transaction KSME, B 2006, 30, 1003. https://doi.org/10.3795/KSME-B.2006.30.10.1003
  18. Gambino, S.; Bansal, A. K.; Samuel, I. D. W. Org. Electron. 2010, 11, 467. https://doi.org/10.1016/j.orgel.2009.11.030
  19. Romero, B.; Arredondo, B.; Alvarez, A. L.; Mallavia, R.; Salines, A.; Quintana, X.; Oton, J. M. Solid-State Electron. 2009, 53, 211. https://doi.org/10.1016/j.sse.2008.11.005
  20. Tseng, S. R.; Li, S. Y.; Meng, H. F.; Yu, Y. H.; Yang, C. M.; Liao, H. H.; Horng, S. F.; Hsu, C. S. Org. Electron. 2008, 9, 279. https://doi.org/10.1016/j.orgel.2007.11.003

Cited by

  1. Synthesis and characterization of conjugated polymers for the obtainment of conductive patterns through laser tracing vol.48, pp.11, 2013, https://doi.org/10.1007/s10853-013-7204-1
  2. Inkjet-printed interdigitated cells for photoelectrochemical oxidation of diluted aqueous pollutants vol.45, pp.12, 2015, https://doi.org/10.1007/s10800-015-0893-1
  3. Inkjet Printed Interdigitated Conductivity Cells with Low Cell Constant vol.5, pp.7, 2016, https://doi.org/10.1149/2.0171607jss
  4. Roll‐to‐Roll fabrication of large area functional organic materials vol.51, pp.1, 2012, https://doi.org/10.1002/polb.23192
  5. Surface-Functionalized Conducting Nanofibers for Electrically Stimulated Neural Cell Function vol.22, pp.2, 2012, https://doi.org/10.1021/acs.biomac.0c01445