DOI QR코드

DOI QR Code

Regulation of Phorbol 12-Myristate 13-Acetate in the Gravitropic Response and Ethylene Production in Primary Roots of Maize

옥수수 뿌리에서 굴중성 반응과 에틸렌 생성에 미치는 Phorbol 12-myristate 13-acetate 조절 작용

  • Jeong, Yun-Ho (Department of Biological Sciences, Andong National University) ;
  • Kim, Jong-Sik (Department of Biological Sciences, Andong National University) ;
  • Lee, Kon-Joo (Department of Biological Sciences, Andong National University) ;
  • Kim, Soon-Young (Department of Biological Sciences, Andong National University)
  • Received : 2011.11.08
  • Accepted : 2011.12.06
  • Published : 2012.01.30

Abstract

Phorbol 12-myristate 13-acetate (PMA), a known tumor-promoting phorbol ester, activates the signal transduction enzyme protein kinase C (PKC) in animal cells. We investigated the effect of PMA on the regulation of gravitropism via ethylene production in primary roots of maize. PMA stimulated root growth and the gravitropic response in a concentration-dependent manner at $10^{-6}$ M and $10^{-4}$ M over 8 hrs. These effects were prevented by treatment with staurosporine (STA), a potent inhibitor of PKC. These results support the possibility that the gravitropic response might be regulated through protein kinases that are involved in the signal transduction system. Ethylene is known to play a role in the regulation of root growth and gravitropism. Ethylene production was increased by about 26% and 37% of the control rate in response to $10^{-6}$ M and $10^{-4}$ M PMA, respectively. PMA also stimulated the activity of ACC synthase (ACS), which converts the S-adenosyl-L-methionine (AdoMet) to 1-aminocyclopropane-1-carboxylic acid (ACC) in the ethylene production pathway. These effects on ethylene production were also prevented by STA treatment. These results suggest that the root gravitropic response in maize is regulated through protein kinases via ethylene production.

암을 유발하는 phorbol ester로 알려진 Phorbol 12-myristate 13-acetate (PMA)는 동물세포에서 신호전달 효소의 하나인 protein kinase C (PKC)를 활성화시킨다. 본 연구에서는 옥수수 일차뿌리에서 PMA가 에틸렌 생성을 통하여 굴중성 반응을 조절하는 효과를 연구하였다. PMA는 8시간 동안 $10^{-6}$ M과 $10^{-4}$ M에서 농도 의존적으로 뿌리 생장과 굴중성 반응을 촉진시켰다. 이러한 촉진 효과는 PKC의 억제제인 staurosporine (STA)에 의해 상쇄되었다. 이 결과는 굴중성 반응이 신호전달 체계에 관여하는 protein kinase C를 통하여 조절될 가능성을 제시하고 있다. 식물호르몬인 에틸렌도 뿌리 생장과 굴중성 반응에 중요한 역할을 한다고 알려져 있다. 에틸렌 생성은 $10^{-6}$ M과 $10^{-4}$ M PMA에 의하여 각각 26%와 37% 증가하였다. PMA는 또한 ACC synthase (ACS) 활성을 촉진시켰다. 또한 이 증가 효과는 STA에 의하여 상쇄되었다. 이 결과는 옥수수 뿌리에서 굴중성 반응은 에틸렌 생성을 거쳐 protein kinase를 통하여 조절될 가능성을 제시하고 있다.

Keywords

References

  1. Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76, 170-174. https://doi.org/10.1073/pnas.76.1.170
  2. Chandok, M. R. and S. K. Sopory. 1998. ZmcPKC70, a protein kinase C-type enzyme from maize. J. Biol. Chem. 273, 19235-19242. https://doi.org/10.1074/jbc.273.30.19235
  3. Cote, G. G. 1995. Signal transduction in leaf movement. Plant Physiol. 109, 729-734.
  4. Geisler, M. and A. S. Murphy. 2006. The ABC of auxin transport: The role of p-glycoproteins in plant development FEBS Letter 580, 1094-1102. https://doi.org/10.1016/j.febslet.2005.11.054
  5. Hardin, S. C. and S. M. Wolniak. 2001. Expression of the mitogen-activated protein kinase kinase ZmMEK1 in the primary roots of maize. Planta 213, 916-926. https://doi.org/10.1007/s004250100564
  6. Huang, F., M. K. Zago, L. Abas, A. Marion, S. Galvan-Ampudia, and R. Offringa. 2010. Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22, 1129-1142. https://doi.org/10.1105/tpc.109.072678
  7. Joo, J. H., H. J. Yoo, I. Hwang, J. S. Lee, K. H. Nam, and Y. S. Bae. 2005. Auxin-induced reactive oxygen species production requires the activation of phosphatidylinositol 3-kinase. FEBS letters 579, 1243-1248. https://doi.org/10.1016/j.febslet.2005.01.018
  8. Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283-307. https://doi.org/10.1146/annurev.pp.44.060193.001435
  9. Kim, S. Y. and T. J. Mulkey. 1997. Effect of ethylene antagonists on auxin -induced inhibition of intact primary root elongation in maize (Zea mays L.). J. Plant Biol. 40, 256-260. https://doi.org/10.1007/BF03030457
  10. Monshausen, G. B., N. D. Miller, A. S. Murphy, and S. Gilroy. 2011. Dynamics of auxin-dependent $Ca^{2+}$ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis. Plant J. 65, 309-318. https://doi.org/10.1111/j.1365-313X.2010.04423.x
  11. Morse, M. J., R. C. Crain, G. G. Cote, and R. L. Satter. 1989. Light-stimulated inositiol phospholipid turnover in Samanea saman pulvini. Plant Physiol. 89, 724-727. https://doi.org/10.1104/pp.89.3.724
  12. Mulkey, T. J., D. R. Poling, S. Y. Kim, and M. L. Evans. 1988. Effect of aminoethoxyvinyl glycine on root gravitropism in maize. Curr. Topics Plant Bilchem. Physiol. 7, 277.
  13. Munnik, T., R. F. Irvine, and A. Musgrave. 1998. Phospholipid signaling in plants. Biochem. Biophys. Acta 1389, 222-272. https://doi.org/10.1016/S0005-2760(97)00158-6
  14. Nishizuka, Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses FASEB 9, 484-496.
  15. Paponov, I. A., W. D. Teale, M. Trebar, I. Blilou, and K. Palme. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 10, 170-177. https://doi.org/10.1016/j.tplants.2005.02.009
  16. Ruzicka, K., K. Ljung, S. Vanneste, R. Podhorska, T. Beeckman, J. Friml, and E. Benkova. 2007. Ethylene regulates root growth through effect on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19, 2197- 2212. https://doi.org/10.1105/tpc.107.052126
  17. Stepanova, A. N., J. Yun, A. V. Likhacheva, and J. M. Alonso. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19, 2169-2185. https://doi.org/10.1105/tpc.107.052068
  18. Sukumar, P., K. S. Edwards, A. Rachman, A. Delong, and G. K. Muday. 2009. PINOID kinase regulates root gravitropism through modulation of PIN2-dependent basipetal auxin transport in Arabidopsis. Plant Physiol. 150, 722-735. https://doi.org/10.1104/pp.108.131607
  19. Swarup, R., E. M. Kramer, P. Perry, K. Knox, H. M. O. Leyser, J. Haseloff, G. T. S. Beemster, R. Bhalerao, and M. J. Bennett. 2005. Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat. Cell Biol. 7, 1057-1065.
  20. Szczegielniak, J., A. Liwosz, I. Jurkowski, M. Loog, G. Dobrowolsda, P. Ke, A. C. Harmon, and G. Muszynska. 2000. Calcium-dependent protein kinase from maize seedlings activated by phospholipid. Eur. J. Biochem. 267, 3818- 3827. https://doi.org/10.1046/j.1432-1327.2000.01420.x
  21. Vandenbussche, F., J. Petrasek, P. Zadnikova, K. Hoyerova, B. Pesek, V. Raz, R. Swarup, M. Bennett, E. Zazimalova, E. Benkova, and Van Der D. Straete. 2010. The auxin influx carreirs AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137, 597-606. https://doi.org/10.1242/dev.040790
  22. Wang, K. L. C., H. Li, and J. R. Ecker. 2002. Ethylene biosynthesis and signaling networks. Plant Cell S131-S151.
  23. Wang, H. and W. R. Woodson. 1989. Reversible inhibition if ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol. 89, 434-438 https://doi.org/10.1104/pp.89.2.434
  24. Woeste, K. E. C., C. Ye, and J. J. Kieber. 1999. Two Arabidopsis mutants that overproduced ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane- 1-carboxylic acid synthase. Plant Physiol. 119, 521-529. https://doi.org/10.1104/pp.119.2.521
  25. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Reu. Plant Physiol. 35, 155-189. https://doi.org/10.1146/annurev.pp.35.060184.001103
  26. Yip, W. K., X. Z. Jiao, and S. F. Yang. 1988. Dependence of in vivo ethylene production rate on 1-aminocyclopropane- 1-carboxylic acid content and oxygen concentration. Plant Physiol. 88, 553.
  27. Yoo, S. D., Y. Cho, and J. Sheen. 2009. Emerging connections in the ethylene signaling network. Trends Plant Sci. 14, 270-279. https://doi.org/10.1016/j.tplants.2009.02.007

Cited by

  1. Synthesis and Protective Effect of New Ligustrazine-Benzoic Acid Derivatives against CoCl2-Induced Neurotoxicity in Differentiated PC12 Cells vol.18, pp.10, 2013, https://doi.org/10.3390/molecules181013027