DOI QR코드

DOI QR Code

Investigation of Mössbauer Spectra of Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22

Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22의 뫼스바우어 분광 연구

  • Received : 2012.01.16
  • Accepted : 2012.02.02
  • Published : 2012.02.29

Abstract

$Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ was prepared by the conventional solid-state reaction method, and studied by x-ray diffractometer, vibrating sample magnetometer, and Mossbauer spectrometer. The crystal structure was determined to be a single-phased rhombohedral with space group R-3m. Magnetization value were $M_s$ = 28.6 emu/g at 295 K. The hysteresis loops indicate that all the samples are ferrimagnetic behaviors. Mossbauer spectra of $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ have been 6-sextet taken at various temperatures ranging from 4.2 to 620 K. Based on the isomer shift (${\delta}$) values of all samples, the charge states were found to be $Fe^{3+}$ state at all temperatures, the Curie temperature was determined to be 630 K by the ZVC curve.

$Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ 시료는 직접합성법으로 제조하였으며, 결정학적 및 자기적 특성을 x-선 회절기(x-ray diffractometer), 진동시료 자화율측정기(vibrating sample magnetometer)과 뫼스바우어 분광기(M$\ddot{o}$ssbauer spectrometer)실험을 이용하여 연구하였다. $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ 시료는 rhombohedral 결정구조로 공간그룹은 R-3m으로 결정되었다. 295 K에서 자화율 값은 28.6 emu/g을 가지며 페리자성 특성을 나타내고 있다. 시료의 뫼스바우어 분광 측정결과 4.2 K부터 620 K까지 6-sextet이 존재하였다. 이성질체 이동치의 값은 전 온도구간에서 Fe 이온은 모두 $Fe^{3+}$로 존재함을 알 수 있었고, zero velocity count(ZVC) 곡선을 통해 630 K를 퀴리온도를 결정하였다.

Keywords

References

  1. B. W. Li, Y. Shen, Z. X. Yue, and C. W. Nan, Appl. Phys. Lett. 89, 132504 (2006). https://doi.org/10.1063/1.2357565
  2. J. W. Wang, A. L. Geiler, V. G. Harris, and C. Vittoria, J. Appl. Phys. 107, 09A515 (2010). https://doi.org/10.1063/1.3338970
  3. Y. Bai, J. Zhou, Z. Yue, Z. Gui, and L. Li, J. Appl. Phys. 98, 063901 (2005). https://doi.org/10.1063/1.2035878
  4. H. J. Kwon, J. Y. Shin, and J. H. Oh, J. Appl. Phys. 75, 6109 (1994). https://doi.org/10.1063/1.355476
  5. T. Kimura, G. Lawes, and A. P. Ramirez, Phys. Rev. Lett. 94, 137201 (2005). https://doi.org/10.1103/PhysRevLett.94.137201
  6. A. Collomb, J. Muller, and T. Fournier, Mater. Res. Bull. 28, 621 (1993). https://doi.org/10.1016/0025-5408(93)90105-M
  7. J. Rodrguez-Carvajal, Physica B 192, 55 (1993). https://doi.org/10.1016/0921-4526(93)90108-I
  8. H. B. Lee, Y. S. Song, J. H. Chung, S. H. Chun, Y. S. Chai, K. H. Kim, M. Reehuis, K. Prokes, and S. Matas, Phys. Rev. B 83, 144425 (2011). https://doi.org/10.1103/PhysRevB.83.144425
  9. G. Albanese, A. Deriu, F. Licci, and S. Rinaldi, IEEE Trans. Magn. 14, 5 (1978).
  10. T. Siegrist and T. A. Vanderah, Eur. J. Inorg. Chem. 2003, 1483 (2003). https://doi.org/10.1002/ejic.200390192
  11. I. Orlov, L. Palatinus, A. Arakcheeva and G. Chapuis, Acta Cryst. B63, 703 (2007).
  12. A. Collomb, M. A. Hadj Farhat, and J. C. Joubert, Mater. Res. Bull. 24, 453 (1989). https://doi.org/10.1016/0025-5408(89)90027-5
  13. Z. W. Li, C. K. Ong, Z. Yang, F. L. Wei, X. Z. Zhou, J. H. Zhao, and A. H. Morrish, Phys. Rev. B 62, 6530 (2000). https://doi.org/10.1103/PhysRevB.62.6530
  14. Z. W. Li, L. Guoqing, N.-L. Di, Z.-H. Cheng, and C. K. Ong, Phys. Rev. B 72, 104420 (2005). https://doi.org/10.1103/PhysRevB.72.104420
  15. S. Y. An, I.-B. Shim, and C. S. Kim, J. Appl. Phys. 91, 8465 (2002). https://doi.org/10.1063/1.1452203