DOI QR코드

DOI QR Code

A Long Road for Stem Cells to Cure Sick Hearts: Update on Recent Clinical Trials

  • Kim, Yong-Sook (Heart Research Center, Chonnam National University Hospital) ;
  • Ahn, Young-Keun (Heart Research Center, Chonnam National University Hospital)
  • Published : 2012.02.29

Abstract

The contribution of stem cells to cure damaged hearts has finally been unraveled. A large number of preclinical and clinical studies have showed beneficial outcomes after myocardial infarction. In this review, the current understanding of stem cell therapy in preclinical and clinical experiences is summarized. Stem cells from bone marrow have shown a potential to improve cardiac performance after myocardial infarction in animal and early clinical studies. Clinical trials from all over the world have provided safety assessments of stem cell therapy with marginal improvement of clinical outcomes. Thus, further investigations should be encouraged to resolve the discrepancies between studies, clinical issues, and unclear translational findings. This review provides information and commentary on key trials for stem cell-based treatment of cardiovascular disease.

Keywords

References

  1. Kajstura J, Leri A, Finato N, Di Loreto C, Beltrami CA, Anversa P. Myocyte proliferation in end-stage cardiac failure in humans. Proc Natl Acad Sci U S A 1998;95:8801-5. https://doi.org/10.1073/pnas.95.15.8801
  2. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344: 1750-7. https://doi.org/10.1056/NEJM200106073442303
  3. Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-5. https://doi.org/10.1038/35070587
  4. Wojakowski W, Tendera M, Michałowska A, et al. Mobilization of CD34/ CXCR4+, CD34/CD117+, c-met+ stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation 2004; 110:3213-20. https://doi.org/10.1161/01.CIR.0000147609.39780.02
  5. Kucia M, Reca R, Jala VR, Dawn B, Ratajczak J, Ratajczak MZ. Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells. Leukemia 2005;19:1118-27. https://doi.org/10.1038/sj.leu.2403796
  6. Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279-95. https://doi.org/10.1091/mbc.E02-02-0105
  7. Carlin R, Davis D, Weiss M, Schultz B, Troyer D. Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 2006;4:8. https://doi.org/10.1186/1477-7827-4-8
  8. De Coppi P, Bartsch G Jr, Siddiqui MM, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007;25:100-6. https://doi.org/10.1038/nbt1274
  9. Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs 2006;184: 105-16. https://doi.org/10.1159/000099617
  10. Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105:93-8. https://doi.org/10.1161/hc0102.101442
  11. Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-6. https://doi.org/10.1161/01.CIR.0000151812.86142.45
  12. Kim YS, Kwon JS, Hong MH, et al. Promigratory activity of oxytocin on umbilical cord blood-derived mesenchymal stem cells. Artif Organs 2010;34:453-61. https://doi.org/10.1111/j.1525-1594.2009.00894.x
  13. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995;18:1417-26. https://doi.org/10.1002/mus.880181212
  14. Hahn JY, Cho HJ, Kang HJ, et al. Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. J Am Coll Cardiol 2008;51:933-43. https://doi.org/10.1016/j.jacc.2007.11.040
  15. Kim YS, Ahn Y, Kwon JS, et al. Priming of Mesenchymal Stem Cells with Oxytocin Enhances the Cardiac Repair in Ischemia/Reperfusion Injury. Cells Tissues Organs 2012, in press.
  16. Lim SY, Kim YS, Ahn Y, et al. The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model. Cardiovasc Res 2006;70:530-42. https://doi.org/10.1016/j.cardiores.2006.02.016
  17. Deuse T, Peter C, Fedak PW, et al. Hepatocyte growth factor or vascular endothelial growth factor gene transfer maximizes mesenchymal stem cell-based myocardial salvage after acute myocardial infarction. Circulation 2009;120(11 Suppl):S247-54. https://doi.org/10.1161/CIRCULATIONAHA.108.843680
  18. Song H, Kwon K, Lim S, et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 2005;19:402-7.
  19. Abbate A, Biondi-Zoccai GG, Appleton DL, et al. Survival and cardiac remodeling benefits in patients undergoing late percutaneous coronary intervention of the infarct-related artery: evidence from a metaanalysis of randomized controlled trials. J Am Coll Cardiol 2008; 51:956-64. https://doi.org/10.1016/j.jacc.2007.11.062
  20. Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular remodeling in heart failure: current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 2011;4:98-108. https://doi.org/10.1016/j.jcmg.2010.10.008
  21. Strauer BE, Brehm M, Zeus T, et al. Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 2001;126:932-8. https://doi.org/10.1055/s-2001-16579-1
  22. Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIRAMI trial. Eur Heart J 2006;27:2775-83. https://doi.org/10.1093/eurheartj/ehl388
  23. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3:393-403.
  24. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss- Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation 1974;17:331-40. https://doi.org/10.1097/00007890-197404000-00001
  25. Caplan AI. Molecular and cellular differentiation of muscle, cartilage, and bone in the developing limb. Prog Clin Biol Res 1986;217B:307-18.
  26. Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med (Maywood) 2004;229:623-31.
  27. Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A 2009;106:14022-7. https://doi.org/10.1073/pnas.0903201106
  28. Wang D, Zhang F, Shen W, et al. Mesenchymal stem cell injection ameliorates the inducibility of ventricular arrhythmias after myocardial infarction in rats. Int J Cardiol 2011;152:314-20. https://doi.org/10.1016/j.ijcard.2010.07.025
  29. Chen SL, Fang WW, Ye F, et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 2004;94:92-5. https://doi.org/10.1016/j.amjcard.2004.03.034
  30. Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD. Intracoronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004;363:783-4. https://doi.org/10.1016/S0140-6736(04)15695-X
  31. Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo- controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009;54:2277-86. https://doi.org/10.1016/j.jacc.2009.06.055
  32. Chin BB, Nakamoto Y, Bulte JW, Pittenger MF, Wahl R, Kraitchman DL. 111In oxine labelled mesenchymal stem cell SPECT after intravenous administration in myocardial infarction. Nucl Med Commun 2003; 24:1149-54. https://doi.org/10.1097/00006231-200311000-00005
  33. Williams AR, Trachtenberg B, Velazquez DL, et al. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 2011;108:792-6. https://doi.org/10.1161/CIRCRESAHA.111.242610
  34. Trachtenberg B, Velazquez DL, Williams AR, et al. Rationale and design of the Transendocardial Injection of Autologous Human Cells (bone marrow or mesenchymal) in Chronic Ischemic Left Ventricular Dysfunction and Heart Failure Secondary to Myocardial Infarction (TACHFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J 2011;161:487-93. https://doi.org/10.1016/j.ahj.2010.11.024
  35. Perin EC, Dohmann HF, Borojevic R, et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003;107:2294-302. https://doi.org/10.1161/01.CIR.0000070596.30552.8B
  36. Stamm C, Westphal B, Kleine HD, et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003; 361:45-6. https://doi.org/10.1016/S0140-6736(03)12110-1
  37. Thirabanjasak D, Tantiwongse K, Thorner PS. Angiomyeloproliferative lesions following autologous stem cell therapy. J Am Soc Nephrol 2010;21:1218-22. https://doi.org/10.1681/ASN.2009111156
  38. Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 2002;73:1919-25. https://doi.org/10.1016/S0003-4975(02)03517-8
  39. Amado LC, Saliaris AP, Schuleri KH, et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 2005;102:11474-9. https://doi.org/10.1073/pnas.0504388102
  40. Price MJ, Chou CC, Frantzen M, et al. Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. Int J Cardiol 2006;111:231-9. https://doi.org/10.1016/j.ijcard.2005.07.036
  41. Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 2006;27:1114-22. https://doi.org/10.1093/eurheartj/ehi818
  42. Feygin J, Mansoor A, Eckman P, Swingen C, Zhang J. Functional and bioenergetic modulations in the infarct border zone following autologous mesenchymal stem cell transplantation. Am J Physiol Heart Circ Physiol 2007;293:H1772-80. https://doi.org/10.1152/ajpheart.00242.2007
  43. Schuleri KH, Amado LC, Boyle AJ, et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol 2008;294:H2002-11. https://doi.org/10.1152/ajpheart.00762.2007
  44. Hashemi SM, Ghods S, Kolodgie FD, et al. A placebo controlled, doseranging, safety study of allogenic mesenchymal stem cells injected by endomyocardial delivery after an acute myocardial infarction. Eur Heart J 2008;29:251-9.
  45. Gyongyösi M, Blanco J, Marian T, et al. Serial noninvasive in vivo positron emission tomographic tracking of percutaneously intramyocardially injected autologous porcine mesenchymal stem cells modified for transgene reporter gene expression. Circ Cardiovasc Imaging 2008; 1:94-103. https://doi.org/10.1161/CIRCIMAGING.108.797449
  46. Wolf D, Reinhard A, Seckinger A, Katus HA, Kuecherer H, Hansen A. Dose-dependent effects of intravenous allogeneic mesenchymal stem cells in the infarcted porcine heart. Stem Cells Dev 2009;18:321-9. https://doi.org/10.1089/scd.2008.0019
  47. Moscoso I, Barallobre J, de Ilarduya OM, et al. Analysis of different routes of administration of heterologous 5-azacytidine-treated mesenchymal stem cells in a porcine model of myocardial infarction. Transplant Proc 2009;41:2273-5. https://doi.org/10.1016/j.transproceed.2009.06.011
  48. Ly HQ, Hoshino K, Pomerantseva I, et al. In vivo myocardial distribution of multipotent progenitor cells following intracoronary delivery in a swine model of myocardial infarction. Eur Heart J 2009;30:2861-8. https://doi.org/10.1093/eurheartj/ehp322
  49. Schuleri KH, Feigenbaum GS, Centola M, et al. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 2009;30:2722-32. https://doi.org/10.1093/eurheartj/ehp265
  50. Dubois C, Liu X, Claus P, et al. Differential effects of progenitor cell populations on left ventricular remodeling and myocardial neovascularization after myocardial infarction. J Am Coll Cardiol 2010;55:2232-43. https://doi.org/10.1016/j.jacc.2009.10.081
  51. Ellison GM, Torella D, Dellegrottaglie S, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. J Am Coll Cardiol 2011;58:977-86. https://doi.org/10.1016/j.jacc.2011.05.013
  52. van Ramshorst J, Bax JJ, Beeres SL, et al. Intramyocardial bone marrow cell injection for chronic myocardial ischemia: a randomized controlled trial. JAMA 2009;301:1997-2004. https://doi.org/10.1001/jama.2009.685
  53. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized- controlled BOOST trial. Eur Heart J 2009;30:2978-84. https://doi.org/10.1093/eurheartj/ehp374
  54. Tendera M, Wojakowski W, Ruzyłło W, et al. Intracoronary infusion of bone marrow-derived selected CD34+CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre Myocardial Regeneration by Intracoronary Infusion of Selected Population of Stem Cells in Acute Myocardial Infarction (REGENT) Trial. Eur Heart J 2009;30:1313-21. https://doi.org/10.1093/eurheartj/ehp073
  55. Beitnes JO, Hopp E, Lunde K, et al. Long-term results after intracoronary injection of autologous mononuclear bone marrow cells in acute myocardial infarction: the ASTAMI randomised, controlled study. Heart 2009;95:1983-9. https://doi.org/10.1136/hrt.2009.178913
  56. Assmus B, Rolf A, Erbs S, et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ Heart Fail 2010;3:89-96. https://doi.org/10.1161/CIRCHEARTFAILURE.108.843243
  57. Grajek S, Popiel M, Gil L, et al. Influence of bone marrow stem cells on left ventricle perfusion and ejection fraction in patients with acute myocardial infarction of anterior wall: randomized clinical trial: impact of bone marrow stem cell intracoronary infusion on improvement of microcirculation. Eur Heart J 2010;31:691-702. https://doi.org/10.1093/eurheartj/ehp536
  58. Arnold R, Villa A, Gutierrez H, et al. Absence of accelerated atherosclerotic disease progression after intracoronary infusion of bone marrow derived mononuclear cells in patients with acute myocardial infarction: angiographic and intravascular ultrasound: results from the TErapia Celular Aplicada al Miocardio Pilot study. Am Heart J 2010;159: 1154. e1-8. https://doi.org/10.1016/j.ahj.2010.03.030
  59. Strauer BE, Yousef M, Schannwell CM. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: the STAR-heart study. Eur J Heart Fail 2010;12: 721-9. https://doi.org/10.1093/eurjhf/hfq095
  60. Seth S, Bhargava B, Narang R, et al. The ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial a long-term follow-up study. J Am Coll Cardiol 2010;55:1643-4. https://doi.org/10.1016/j.jacc.2009.11.070
  61. Traverse JH, McKenna DH, Harvey K, et al. Results of a phase 1, randomized, double-blind, Placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. Am Heart J 2010;160:428-34. https://doi.org/10.1016/j.ahj.2010.06.009
  62. Santoso T, Irawan C, Alwi I, et al. Safety and feasibility of combined granulocyte colony stimulating factor and erythropoetin based-stem cell therapy using intracoronary infusion of peripheral blood stem cells in patients with recent anterior myocardial infarction: one-year follow- up of a phase 1 study. Acta Med Indones 2011;43:112-21.
  63. Mansour S, Roy DC, Bouchard V, et al. One-year safety analysis of the COMPARE-AMI Trial: comparison of intracoronary injection of CD133 bone marrow stem cells to Placebo in patients after acute myocardial infarction and left ventricular dysfunction. Bone Marrow Res 2011; 2011:385124.
  64. Hirsch A, Nijveldt R, van der Vleuten PA, et al. Intracoronary infusion of mononuclear cells from bone marrow or peripheral blood compared with standard therapy in patients after acute myocardial infarction treated by primary percutaneous coronary intervention: results of the randomized controlled HEBE trial. Eur Heart J 2011;32:1736-47. https://doi.org/10.1093/eurheartj/ehq449
  65. Penn MS, Ellis S, Gandhi S, et al. Adventitial delivery of an allogeneic bone marrow-derived adherent stem cell in acute myocardial infarction: phase I clinical study. Circ Res 2012;110:304-11. https://doi.org/10.1161/CIRCRESAHA.111.253427
  66. Bolli R, Chugh AR, D'Amario D, et al. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 2011;378:1847-57. https://doi.org/10.1016/S0140-6736(11)61590-0
  67. Moreira RD, Haddad AF, Silva SA, et al. Intracoronary stem-cell injection after myocardial infarction: microcirculation sub-study. Arq Bras Cardiol 2011;97:420-6. https://doi.org/10.1590/S0066-782X2011005000095
  68. Solheim S, Seljeflot I, Lunde K, et al. The influence of intracoronary injection of bone marrow cells on prothrombotic markers in patients with acute myocardial infarction. Thromb Res 2011 Dec 20 [Epub]. http://dx.doi.org/10.1016/j.thromres.2011.11.045.
  69. Roncalli J, Mouquet F, Piot C, et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: results of the randomized multicenter BONAMI trial. Eur Heart J 2011;32:1748-57. https://doi.org/10.1093/eurheartj/ehq455
  70. Ahmadi H, Moshkani Farahani M, Kouhkan A, et al. Five-Year Followup Of The Local Autologous Transplantation of CD133+ Enriched Bone Marrow Cells in Patients with Myocardial Infarction. Arch Iran Med 2012;15:32-5.

Cited by

  1. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells vol.305, pp.4, 2012, https://doi.org/10.1152/ajpcell.00404.2012
  2. Stem cell therapy for cardiac regeneration: hits and misses vol.93, pp.10, 2015, https://doi.org/10.1139/cjpp-2014-0468