DOI QR코드

DOI QR Code

A Study on the Optimization of the SiNx:H Film for Crystalline Silicon Sloar Cells

결정질 실리콘 태양전지용 SiNx:H 박막 특성의 최적화 연구

  • Lee, Kyung-Dong (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Young-Do (Department of Materials Science and Engineering, Korea University) ;
  • Dahiwale, Shailendra S. (Department of Materials Science and Engineering, Korea University) ;
  • Boo, Hyun-Pil (Department of Materials Science and Engineering, Korea University) ;
  • Park, Sung-Eun (Department of Materials Science and Engineering, Korea University) ;
  • Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
  • 이경동 (고려대학교 신소재공학과) ;
  • 김영도 (고려대학교 신소재공학과) ;
  • ;
  • 부현필 (고려대학교 신소재공학과) ;
  • 박성은 (고려대학교 신소재공학과) ;
  • 탁성주 (고려대학교 신소재공학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Received : 2011.10.27
  • Accepted : 2011.11.28
  • Published : 2012.01.30

Abstract

The Hydrogenated silicon nitride (SiNx:H) using plasma enhanced chemical vapor deposition is widely used in photovoltaic industry as an antireflection coating and passivation layer. In the high temperature firing process, the $SiN_x:H$ film should not change the properties for its use as high quality surface layer in crystalline silicon solar cells. Initially PECVD-$SiN_x:H$ film trends were investigated by varying the deposition parameters (temperature, electrode gap, RF power, gas flow rate etc.) to optimize the process parameter conditions. Then by varying gas ratios ($NH_3/SiH_4$), the hydrogenated silicon nitride films were analyzed for its optical, electrical, chemical and surface passivation properties. The $SiN_x:H$ films of refractive indices 1.90~2.20 were obtained. The film deposited with the gas ratio of 3.6 (Refractive index=1.98) showed the best properties in after firing process condition. The single crystalline silicon solar cells fabricated according to optimized gas ratio (R=3.6) condition on large area substrate of size $156{\times}156mm$ (Pseudo square) was found to have the conversion efficiency as high as 17.2%. Optimized hydrogenated silicon nitride surface layer and high efficiency crystalline silicon solar cells fabrication sequence has also been explained in this study.

수소화된 실리콘 질화막은 결정질 태양전지 산업에서 반사방지막과 패시베이션 층으로 널리 사용되고 있다. 또한, 수소화된 질화막은 금속 소성공정과 같은 높은 공정온도를 거친 후에도 결정질 실리콘 태양전지의 표면층으로서 충족되는 특성들이 변하지 않고 유지 되어야 한다. 본 연구에서는 Plasma enhanced chemical vapor deposition 장치를 이용한 수소화된 실리콘 질화막의 특성 변화에 대한 경향성을 알아보기 위하여 증착조건의 변수(온도, 증착거리, 무선주파수 전력, 가스비율 등)들을 다양하게 가변하여 증착조건의 최적화를 찾았다. 이후 수소화된 실리콘 질화막의 전구체가 되는 사일렌($SiH_4$)과 암모니아 ($NH_3$) 가스비를 변화시켜가며 결정질 실리콘 태양전지에 사용되기 위한 박막의 광학 전기 화학적 그리고 표면 패시베이션 특성들을 분석하였다. 가스 비율에 따른 수소화된 실리콘 질화막의 굴절율 범위는 1.90~2.20까지 나타내었다. 결정질 실리콘 태양전지에 사용하기 위한 가장 적합한 특성은 3.6 ($NH_3/SiH_4$)의 가스비율을 나타내었다. 이를 통하여 $156{\times}156mm$ 대면적 결정질 실리콘 태양전지를 제작하여 17.2 %의 변환 효율을 나타내었다.

Keywords

References

  1. R. Wolf, K. Wandel, and B. Gruska, Surf. Coat. Technol. 142-144, 786 (2001). https://doi.org/10.1016/S0257-8972(01)01184-7
  2. Tapati Jana, Sumita Mukhopadhyay, and Swati Ray, Sol. Energy Mater. Sol. Cells 71, 197 (2002). https://doi.org/10.1016/S0927-0248(01)00058-7
  3. F. Duerinckx and J. Szlufcik, Sol. Energy Mater. Sol. Cells 72, 231 (2002). https://doi.org/10.1016/S0927-0248(01)00170-2
  4. H. Mackel and R. Ludemann, J. Appl. Phys. 92, 2602 (2002). https://doi.org/10.1063/1.1495529
  5. B. L. Sopori, X. Deng, J. P. Benner, A. Rohatgi, P. Sana, S. K. Estreicher, Y. K. Park, and M. A. Roberson, Sol. Energy Mater. Sol. Cells, 41, 159 (1996). https://doi.org/10.1016/0927-0248(95)00098-4
  6. C. S. Yoo, Semiconductor manufacturing technology (World Scientific Publishing Co. Pte. Ltd.,Taiwan, 2008), pp.174-178.
  7. Daniel M. Dobkin and Michael K. Zuraw, Principles of Chemical Vapor Deposition (KLIWER ACADEMIC PUBLISHERS, NETHERLANDS, 2003), pp.- 149-160.
  8. Michael Quirk and Julian Serda, Semiconductor Manufacturing Technology (Stephen Helba, Prentice Hall, USA, 2001), pp.184.
  9. J. -F. Lelievre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, Sol.Energy Mater. Sol. Cells 93, 1281 (2009). https://doi.org/10.1016/j.solmat.2009.01.023
  10. Mark John Kerr, The degree of Doctor of Philosophy of the Australian National University (2002).
  11. S. W. Glunz, A. Grohe, M. Hermle, M. Hofmann, S. Janz, T. Roth, O. Schultz, M. Vetter, I. Martin, R. Ferre, S. Bermejo, W. Wolke, W. Warta, R. Preu, and G. Willeke, Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona.
  12. J. Y. Lee, The degree of Doctor of Philosophy of the Fraunhofer-Institute for Solar Energy Systems (ISE) and the University of Freiburg (2003).
  13. Natalita M. Nursam, Yongling Ren, and Klaus J. Weber, Research Article, Advanceds in Opto- Electronics (2010).
  14. Christoph Boehme and Gerald Lucovsky. J. Non-Cryst. Solids 299, 1157 (2002). https://doi.org/10.1016/S0022-3093(01)01135-8
  15. Martin A. Green, Solar Cells (Prentice- Hall, Inc., USA, 1982), pp.161-164.

Cited by

  1. Investigation of Proton Irradiated Effect on n, p type Silicon by Positron Annihilation Method vol.21, pp.5, 2012, https://doi.org/10.5757/JKVS.2012.21.5.225
  2. Comparison of Passivation Property on Hydrogenated Silicon Nitrides whose Antireflection Properties are Identical vol.26, pp.1, 2016, https://doi.org/10.3740/MRSK.2016.26.1.47
  3. Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method vol.22, pp.6, 2013, https://doi.org/10.5757/JKVS.2013.22.6.341