DOI QR코드

DOI QR Code

P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃

  • 김익주 (광운대학교 전자재료공학과) ;
  • 오병훈 (광운대학교 전자재료공학과) ;
  • 이정호 (광운대학교 전자재료공학과) ;
  • 구상모 (광운대학교 전자재료공학과)
  • Kim, Ik-Ju (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Oh, Byung-Hoon (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Lee, Jung-Ho (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
  • 투고 : 2012.01.19
  • 심사 : 2012.01.24
  • 발행 : 2012.02.01

초록

ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

키워드

참고문헌

  1. D. D. Lee and D. S. Lee, IEEE SENSORS J., 1, 214 (2001). https://doi.org/10.1109/JSEN.2001.954834
  2. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, Sensor. Actuat. B-Chem., 160, 580 (2011). https://doi.org/10.1016/j.snb.2011.08.032
  3. Nguyen Le Hung, Hyojin Kim, S. K. Hong, and D. J. Kim, Sensor. Actuat. B-Chem., 151, 127 (2010). https://doi.org/10.1016/j.snb.2010.09.036
  4. C. Y. Liu, C. F. Chen, and J. P. Leu, J. Electrochem. Soc., 1, J16 (2009).
  5. D. Calestania, M. Zha, R. Mosca, A. Zappettini, M. C. Carotta, V. Di Natale, and L. Zanotti, Sensor. Actuat. B-Chem., 144, 472 (2010). https://doi.org/10.1016/j.snb.2009.11.009
  6. C. Liangyuan, L. Zhiyong, B. Shouli, Z. Kewei, L. Dianqing, C. Aifan, and C. C. Liu, Sensor. Actuat. B-Chem., 143, 620 (2010). https://doi.org/10.1016/j.snb.2009.10.009
  7. K. W. Kim, Y. W. Song, S. P. Chang, I. H. Kim, S. S. Kim, and S. Y. Lee, Thin Solid Films, 518, 1190 (2009). https://doi.org/10.1016/j.tsf.2009.03.229
  8. C. Bur, P. Reimann, A. Schutze, M. Andersson, and A. L. Spetz, (IEEE Sensors Conference, 2010) p. 1267.
  9. K. Zhu, W. Wang, X. Chen, J. Liu, B. Song, L. Jiang, J. Guo, and J. Cheng, J. Alloys Comp., 509, 6942 (2011). https://doi.org/10.1016/j.jallcom.2011.04.007
  10. P. G. Li, Q .R. Hu, and W. H. Tang, J. Alloys Comp., 509, 2776 (2011). https://doi.org/10.1016/j.jallcom.2010.11.080
  11. H. Gonga, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Sensor. Actuat. B-Chem., 115, 247 (2006). https://doi.org/10.1016/j.snb.2005.09.008
  12. A. Wei, L. Pan, and W. Huang, Mater. Sci. Eng., B176, 1409 (2011).
  13. S. Nakagomi, A. L. Spetz, I. Lundström, and P. Tobias, IEEE Sensors J., 2, 379 (2002). https://doi.org/10.1109/JSEN.2002.805036
  14. M. Andersson, H. Wingbrant, and A. L. Spetz, IEEE, 105 (2005).
  15. E. Becker, M. Skoglundh, M. Andersson, and A. L. Spetz (IEEE Sensors Conference, 2008) p. 1309.