DOI QR코드

DOI QR Code

Fragrance Composition in Six Tree Peony Cultivars

  • Zhao, Jing (College of Landscape Architecture, Beijing University of Agriculture) ;
  • Hu, Zeng-Hui (College of Landscape Architecture, Beijing University of Agriculture) ;
  • Leng, Ping-Sheng (College of Landscape Architecture, Beijing University of Agriculture) ;
  • Zhang, Hui-Xiu (College of Landscape Architecture, Beijing University of Agriculture) ;
  • Cheng, Fang-Yun (College of Landscape Architecture, Beijing Forestry University)
  • Received : 2012.03.21
  • Accepted : 2012.07.21
  • Published : 2012.12.31

Abstract

Tree peony is a traditional famous flower of China, and plays an important role in Chinese traditional culture. But the floral scent of tree peony in vivo is little known. In this study, in order to explore the floral composition of tree peony, floral volatiles of six cultivars, including Paeonia suffruticosa 'Zhaofen' (ZF), P. suffruticosa 'Luoyanghong' (LYH), P. ostii 'Fengdanbai' (FDB), P. ${\times}$ lemonei 'High noon' (HN), P. ${\times}$ lemonei 'Renown' (R), and P. rockii 'Gaoyuanshenghuo' (GYSH) were collected by dynamic headspace and then identified by Automated Thermal Desorption-Gas Chromatography/Mass Spectometry. The results showed that floral fragrances of the six cultivars were qualitatively and quantitatively distinct. A total of 105 volatiles involving ten categories were detected. But not all volatile categories were emitted from these cultivars. The six peony cultivars emitted some shared compounds and peculiar compounds. The total released amounts of volatiles emitted from six cultivars were found significantly different, which was greatest for 'GYSH'. The most abundant volatile compounds detected from 'ZF', 'LYH', 'FDB', 'HN', 'R', and 'GYSH' were respectively ${\alpha}$-pinene, 2,3-dihydroxy propanal, 3-methyl-1-butanol, 2-ethyl-1-hexanol, acetic acid 1-methylethyl ester, and 5-ethyl-2,2,3-trimethyl heptane. This result may contribute to exploring the biosynthesis and emission mechanism of floral scent in tree peony.

Keywords

References

  1. Arimura, G., R. Ozawa, S. Kugimiya, J. Takabayashi, and J. Bohlmann. 2004. Herbivore-induced defense response in a model legume. Two-spotted spider mites induce emission of (E)-$\beta$-ocimene and transcript accumulation of (E)-$\beta$-ocimene synthase in Lotus japonicus. Plant Physiol. 135:1976-1983. https://doi.org/10.1104/pp.104.042929
  2. Baez, D., J.A. Pino, and D. Morales. 2011. Floral scent composition in Hedychium coronarium J. Koenig analyzed by SPME. J. Essential Oil Res. 23(3):64-67. https://doi.org/10.1080/10412905.2011.9700460
  3. Bate, N.J. and S.J. Rothstein. 1998. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16:561-569. https://doi.org/10.1046/j.1365-313x.1998.00324.x
  4. Chen, F., D. Tholl, J.C. D'Auria, A. Farooq, E. Pichersky, and J. Gershenzon. 2003. Biosynthesis and emission of terpenoid volatiles from Arabidopsis Flowers. Plant Cell 15:481-494. https://doi.org/10.1105/tpc.007989
  5. Chen, Y.S. and S.H. Wu. 2005. Study on China's ancient tree peony culture. J. Beijing Forestry Univ. Social Sci. 4:18-23.
  6. Croft, K.P.C., F. Juttner, and A.J. Slusarenko. 1993. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris L. leaves inoculated with Pseudomonas syringae pv. phaseolicola. Plant Physiol. 101:13-24.
  7. Dudareva, N., D. Martin, C.M. Kish, N. Kolosova, N. Gorenstein, J. Faldt, B. Miller, and J. Bohlmann. 2003. (E)-$\beta$-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: Function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227-1241. https://doi.org/10.1105/tpc.011015
  8. Dudareva, N. and E. Pichersky. 2000. Biochemical and molecular genetic aspects of floral scents. Plant Physiol. 122:627-628. https://doi.org/10.1104/pp.122.3.627
  9. Dudareva, N., F. Negre, D.A. Nagegowda, and I. Orlova. 2006. Plant volatiles: Recent advances and future perspectives. Critical Rev. Plant Sci. 25:417-440. https://doi.org/10.1080/07352680600899973
  10. Effmert, U., J. Grobe, U.S.R. Rose, F. Ehrig, R. Kagi, and B. Piechulla. 2005. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Amer. J. Bot. 92:2-12. https://doi.org/10.3732/ajb.92.1.2
  11. Faegri, K. and van der Pijl L. 1979. The principles of pollination biology. 3rd ed. Pergamon, Oxford, UK.
  12. Gershenzon, J. and R. Croteau. 1991. Terpenoids, p. 165-219. In: G.A. Rosenthal and M. Berenbaum (eds.). Herbivores: Their interaction with secondary plant metabolites. Academic Press, New York, USA.
  13. Hu, Z.H., Y.B. Shen, Y.Q. Luo, F.Y. Shen, H.B. Gao, and R.F. Gao. 2008. Aldehyde volatiles emitted in succession from mechanically damaged leaves of poplar cuttings. J. Plant Biol. 51:269-275. https://doi.org/10.1007/BF03036126
  14. Huang, X., C. Wang, X.H. Wang, X.Z. Sun, and X.F. Guo. 2010. Preliminary study of aromatic components inherbaceous peonies of 'Yangfei Chuyu' and 'Dafugui'. Acta Hort. Sinica 37:817-822.
  15. Hui, R.H., D.Y. Hou, T.C. Li, and J.L. Zhang. 2001. Analysis of volatile components in Phellodendron chinense Schneid. Chin. J. Analytical Chem. 29:361-364.
  16. Jiang, Y.F., X.L. Chen, H. Lin, F. Wang, and F. Chen. 2011. Floral scent in wisteria: Chemical composition, emission pattern, and regulation. J. Amer. Soc. Hort. Sci. 136:307-314.
  17. Jurgens, A., T. Witt, and G. Gottsberger. 2002. Flower scent composition in night-flowering Silene species (Caryophyllaceae). Biochem. System. Ecol. 30:383-397. https://doi.org/10.1016/S0305-1978(01)00106-5
  18. Kaori, S., T. Maeda, G. Arimura, R. Ozawa, T. Shimoda, and J. Takabayashi. 2002. Functions of plant infochemicals in tritrophics interactions between plants, herbivores and carnivorous natural enemies. Jpn. J. Appl. Entomol. Zool. 46:117-133. https://doi.org/10.1303/jjaez.2002.117
  19. Knudsen, J.T. 2006. Diversity and distribution of floral scent. Bot. Rev. 72:1-120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
  20. Knudsen, J.T. and L. Tollsten. 1993. Trends in floral scent chemistry in pollination syndromes: Floral scent composition in moth-pollinated taxa. Bot. J. Linn. Soc. 113:263-284. https://doi.org/10.1111/j.1095-8339.1993.tb00340.x
  21. Knudsen, J.T., L.Tollsten, and G. Bergstrom. 1993. Floral scents - A checklist of volatile compounds isolated by headspace techniques. Phytochemistry 33:253-280. https://doi.org/10.1016/0031-9422(93)85502-I
  22. Li, H.D., Y. Gao, and Y.J. Jin. 2004. The daily dymamic variances of the VOCS releasing from flowers of Siberia kirilowii (Regel) maxim. J. Inner Mongolia Agric. Univ. 25:54-59.
  23. Li, M.R. 2010. Changes of aroma compounds and some related enzymes activity in tree peony petal during florescence and flower senescence. Henan Univ. Sci. Technol.
  24. Li, Z.G., M.R. Lee, and D.L. Shen. 2006. Analysis of volatile compounds emitted from fresh Syringa oblata flowers in different florescence by headspace solid-phase microextraction-gas chromatography-mass spectrometry. Anal. Chim. Acta 576:43-49. https://doi.org/10.1016/j.aca.2006.01.074
  25. Liu, J.H., F.Y. Dong, C.G. Cheng, Y.J. Gu, and S.E. Li. 1999. Analysis of the essential oil chemical composition in peony flower. Shandong Chem. Ind. (3):35-36,18.
  26. Pichersky, E. and J. Gershenzon. 2002. The formation and function of plant volatiles: Perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5:237-243. https://doi.org/10.1016/S1369-5266(02)00251-0
  27. Pichersky, E., R.A. Robert, E. Lewinsohn, and R. Croteau. 1994. Floral scent production in Clarkia (Onagraceae) 1. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol. 106:1533-1540.
  28. Ping, L., Y. Shen, and Y. Jin. 2001. Plant volatiles released in succession from artificially wounded ashleaf maple leaves. Aust. J. Plant Physiol. 28:513-517.
  29. Raguso, R.A. and E. Pichersky. 1995. Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): Recent evolution of floral scent and moth pollination. Plant Syst. Evol. 194:55-67. https://doi.org/10.1007/BF00983216
  30. Raguso, R.A. and O. Pellmyr. 1998. Dynamic headspace analysis of floral volatiles: A comparison of methods. Oikos 81:238-254. https://doi.org/10.2307/3547045
  31. Shang, C.Q., Y.M. Hu, C.H. Deng, and K.J. Hu. 2002. Rapid determination of volatile constituents of Michelia alba flowers by gas chromatography-mass spectrometry with solid-phase microextraction. J. Chromatogr. 942:283-288. https://doi.org/10.1016/S0021-9673(01)01382-6
  32. Stashenko, E.E. and J.R. Martinez. 2008. Sampling flower scent for chromatographic analysis. J. Sep. Sci. 31:2022-2031. https://doi.org/10.1002/jssc.200800151
  33. Svensson, G.P., M.O. Hickman, S. Bartram, W. Boland, O. Pellmyr, R.A. Raguso. 2005. Chemistry and geographic variation of floral scent in Yucca filamentosa (Agavaceae). Am. J. Bot. 92:1624-1631. https://doi.org/10.3732/ajb.92.10.1624
  34. Ton, J., M. D'Alessandro, V. Jourdie, G. Jakab, D. Karlen, M. Held, B.M. Mani, and T.C.J. Turlings. 2007. Priming by airborne signals boosts direct and indirect resistance in maize. Plant J. 49:16-26.
  35. Wright, G.A., A. Lutmerding, N. Dudareva, and B.H. Smith. 2005. Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J. Comp. Physiol. A 191:105-114. https://doi.org/10.1007/s00359-004-0576-6
  36. Wright, G.A., and B.H. Smith. 2004. Variation in complex olfactory stimuli and its influence on odour recognition. Proc. R. Soc. B 271:147-152. https://doi.org/10.1098/rspb.2003.2590
  37. Zhang, F.J., J.Q. Li, X.Y. Xu, X.D. Meng, and F.J. Chen. 2007. The volatiles of two greening tree species and the antimicrobial activity. Acta Hort. Sin. 34:973-978.
  38. Zhang, H.L. 2011. The researches on variation of florescence, color and aromatic compounds in Paeonia suffruticosa. Shandong Agric. Univ.
  39. Zhou, H.M., J.C. Qi, M.J. Dong, P. Li, and J.Q. Ma. 2008. Analysis of the volatile components in peony flowers by SPME-GC-MS. Chem. Anal. Meterage 17:21-23.

Cited by

  1. Analysis of floral scent emitted from Syringa plants vol.27, pp.2, 2016, https://doi.org/10.1007/s11676-015-0156-3
  2. Transcriptome Sequencing Analysis Reveals a Difference in Monoterpene Biosynthesis between Scented Lilium ‘Siberia’ and Unscented Lilium ‘Novano’ vol.8, pp.1664-462X, 2017, https://doi.org/10.3389/fpls.2017.01351
  3. Chemical Compositions and Antioxidant Activities of Essential Oils Extracted from the Petals of Three Wild Tree Peony Species and Eleven Cultivars vol.14, pp.11, 2012, https://doi.org/10.1002/cbdv.201700282
  4. Comparative Chemical Profiles of Essential Oils and Hydrolate Extracts from Fresh Flowers of Eight Paeonia suffruticosa Andr. Cultivars from Central China vol.23, pp.12, 2012, https://doi.org/10.3390/molecules23123268
  5. Gene cloning and expression analysis of limonene synthase in Syringa oblata and S. oblata var. alba vol.30, pp.4, 2012, https://doi.org/10.1007/s11676-018-0697-3
  6. Major Fatty Acid Profiles and Bioactivity of Seed Oils from Ten Tree Peony Cultivars as a Potential Raw Material Source for the Cosmetics and Healthy Products vol.17, pp.10, 2012, https://doi.org/10.1002/cbdv.202000469
  7. Analysis of Floral Fragrance Compounds of Chimonanthus praecox with Different Floral Colors in Yunnan, China vol.8, pp.8, 2012, https://doi.org/10.3390/separations8080122
  8. The Chemical Composition of Single-Tree Boswellia frereana Resin Samples vol.16, pp.9, 2012, https://doi.org/10.1177/1934578x211043727
  9. Effect of Coriander Plants on Human Emotions, Brain Electrophysiology, and Salivary Secretion vol.10, pp.12, 2012, https://doi.org/10.3390/biology10121283