DOI QR코드

DOI QR Code

네오디뮴 폐자석 재활용을 위한 화학환원법을 이용한 철 나노 분말 제조

Synthesis of Iron Nanopowder from FeCl3 Solution by Chemical Reduction Method for Recycling of Spent Neodymium Magnet

  • 하용황 (중원대학교 자원순환환경공학과) ;
  • 강윤지 (중원대학교 자원순환환경공학과) ;
  • 최승훈 (서남대학교 환경화학공학과) ;
  • 윤호성 (한국지질자원연구원) ;
  • 안종관 (중원대학교 자원순환환경공학과)
  • Ha, Yonghwang (Department of Resources Recycling and Environmental Engineering, Jungwon University) ;
  • Gang, Ryun-Ji (Department of Resources Recycling and Environmental Engineering, Jungwon University) ;
  • Choi, Seung-Hoon (Department of Environmental & Chemical Engineering, Seonam University) ;
  • Yoon, Ho-Sung (Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Jong-Gwan (Department of Resources Recycling and Environmental Engineering, Jungwon University)
  • 투고 : 2012.11.13
  • 심사 : 2012.12.06
  • 발행 : 2012.12.31

초록

네오디뮴 폐자석 침출액으로부터 희유금속인 네오디뮴을 회수하기 위해서는 네오디뮴과 같이 침출되는 철의 부가가치를 높이는 연구가 필요하다. 본 연구에서는 네오디뮴과 같이 침출되는 철의 유용자원화를 위한 기초연구로 철 나노분말 제조하는 실험을 수행하였다. 본 연구는 $FeCl_3$ 용액을 철 분말 원료로, 분산제는 $Na_4O_7P_2$와 Polyvinylpyrrolidone를 이용하였고, 환원제로는 $NaBH_4$, 철 나노분말 핵생성 촉진제 시드(seed)로 염화팔라듐을 사용하였다. 제조한 철 나노분말을 XRD, 전자현미경(SEM) 및 PSA 등을 이용하여 분말의 형상 및 크기 등을 분석하였다. 철과 $NaBH_4$의 농도비가 1 : 5이며, 반응시간이 30분 이상인 경우에서 철 분말이 제조되었으며, 이때 철 분말은 구형이었으며, 입도는 약 50 nm ~ 100 nm 크기였다. 분산제 $Na_4O_7P_2$의 경우 100 mg/L에서 철이온의 제타포텐셜이 음의 값을 가지므로 100 mg/L로 일정하게 하고, PVP와 Pd의 농도를 다양하게 하였을 경우, $FeCl_3$와 PVP와 Pd의 질량비 1 : 4 및 1 : 0.001에서, 분산이 양호하고, 입도 100 nm 크기인 철 나노분말을 합성하였다.

Recycling process of iron should be developed for efficient recovery of neodymium(Nd), rare metal, from acid-leaching solution of neodymium magnet. In this study, $FeCl_3$ solution as iron source was used for synthesis of iron nanoparticle with the condition of various factors, etc, reductant, surfactant. $Na_4O_7P_2$ and polyvinylpyrrolidone(PVP) as surfactants, $NaBH_4$ as reductant, and palladium chloride($PdCl_2$) as a nucleation seed were used. Iron powder was analyzed with instruments of XRD, SEM and PSA for measuring shape and size. Iron nanoparticles were made at the ratio of 1 : 5(Fe (III) : $NaBH_4$) after 30 min of reduction time. Size and shape of iron particles synthesized were round-form and 50 nm ~ 100 nm size. Zeta-potential of iron at the 100 mg/L of $Na_4O_7P_2$ was negative value, which is good for dispersion of metal particle. When $Na_4O_7P_2$(100 mg/L), PVP($FeCl_3$ : PVP = 1 : 4, w/w) and Pd($FeCl_3$ : $PdCl_2$ = 1 : 0.001, w/w) were used, iron nanoparticles which are round-shape, well-dispersed, near 100 nm-sized can be made.

키워드

참고문헌

  1. Han Shin Choi, Yong Hwan Kim, "Recycling Technology of Nd-Fe-B based Rare Earth Element Magnets", Journal of Korean Powder metallurgy Institute, vol 17, no. 6, pp. 435-442, 2010 https://doi.org/10.4150/KPMI.2010.17.6.435
  2. Wu, K. T., Yao, Y. D., Wang, C. R. C., Chen, P. F., Yeh, E. T., "Magnetic field induced optical transmission study in an iron nanoparticle ferrofluid", Journal of Applied Physics, vol 85, no.8, pp. 5959-5961, 1999, Article(CrossRefLink) https://doi.org/10.1063/1.370004
  3. Wong, E. W., Bronikowski, M. J., Hoenk, M. E., Kowalczyk, R. S., Hunt, B. D., "Submicron patterning of iron nanoparticle monolayers for carbon nanotube growth", Chemistry of Materials, vol 17, no.2, pp. 237-241. 2005, Article(CrossRefLink) https://doi.org/10.1021/cm048795m
  4. Jun, Y. W., Huh, Y. M., Choi, J. S., Lee, J. H., Song, H. T., Kim, S., Yoon, S., Kim, K. S., Shin, J. S., Suh, J. S., Cheon, J., "Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging", Journal of American Chemical Society, vol 127, no. 16, pp. 5732-5733, 2005, Article(CrossRefLink) https://doi.org/10.1021/ja0422155
  5. Mornet, S., Vasseur, S., Grasset, F., Duguet, E., "Magnetic nanoparticle design for medical diagnosis and therapy", Journal of Material Chemistry, vol 14, no. 14, pp. 2161-2175, 2004, Article(CrossRefLink) https://doi.org/10.1039/b402025a
  6. Kuo-Cheng Huang, Kan-Sen Chou, "Microstructure changes to iron nanoparticles during discharge/charge cycles", Electrochemistry Communications, vol 9, pp. 1907-1912, 2007, Article(CrossRefLink) https://doi.org/10.1016/j.elecom.2007.05.001
  7. Zhang, W. X. "Nanoscale iron particles for environmental remediation: An overview", Journal of Nanoparticle Research, vol 5, pp. 323-332. 2003, Article(CrossRefLink) https://doi.org/10.1023/A:1025520116015
  8. Hwa Yongg Lee, Sung Gyn Kim, "Kinetic Study on Preparation of Iron Fine Powders by Hydrogen Reduction of Ferous Chloride Vapor", Korean journal of material research, vol 10, no. 6, pp. 385-391, 2000
  9. Jong-gu Park, "Current status and prospect of nanopowder technology", Proceedings of the Korean Society of Toxicology Conference, pp. 27-39, May 2005
  10. Ahn, J., Hoang,T., Kim, D., Kim, M., Kim, C., Chung, H., "Effect of $Na_{4}O_{7}P_{2}$ on Cu powder preparation from $Cu_{2}O$-water slurry system", Journal of Colloid Interface Science, vol 319, pp. 109-114, 2008, Article(CrossRefLink) https://doi.org/10.1016/j.jcis.2007.08.070
  11. Huang, C., Ehrman, H., "Synthesis of iron nonoparticles via chemical reduction with palladium ion seeds", Langmuir, vol 23, no. 3, pp. 1419-1426, 2007 https://doi.org/10.1021/la0618364
  12. Xiaomin, H., Xiaobo, S., Huagui, Z., Dongen, Z., Dandan, Y., Qingbiao, Z., "Studies on the one-step preparation of iron nanoparticles in solution", Journal of Crystal Growth, Vol. 275, pp.548-553, 2005, Article(CrossRefLink) https://doi.org/10.1016/j.jcrysgro.2004.12.009
  13. Marcel Pourbaix, Lectures on eletrochemical corrosion, pp. 16, Plenum Press, 1973, Article(CrossRefLink)