References
- R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunz, E. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall, M. A. Alam, J. Murthi, S. C. Jacobson, M. Olivier, D. Markus, P. M. Cambell, and E. Snow, "Macroelectronics: Perspectives on Technology and Applications", Proc. IEEE, 93, 1239 (2005). https://doi.org/10.1109/JPROC.2005.851237
- T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications", Proc. Natl. Acad. Sci. U.S.A, 101, 9966 (2004). https://doi.org/10.1073/pnas.0401918101
- X. Lu, Y. Xia, "Electronic materials: Buckling down for flexible electronics", Nat. Nanotechnol, 1, 163 (2006). https://doi.org/10.1038/nnano.2006.157
- D. -H. Kim, J. -H. Ahn, W. M. Choi, H. -S. Kim, T. -H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
- M. B. Schubert and J. H. Werner, "Flexible Solar Cells for Clothing", Mater. Today, 9, 42 (2006).
- G. Corbelli, C. Ghisleri, M. Marelli, P. Milani, and L. Ravagnan, "Highly Deformable Nanostructured Elastomeric Electrodes With Improving Conductivity Upon Cyclical Stretching", Adv. Mater., 23, 4504 (2011). https://doi.org/10.1002/adma.201102463
- D. C. Hyun, M. Park, C. Park, Bongsoo Kim, Younan Xia, Jae Hyun Hur, Jong Min Kim, Jong Jin Park, and Unyong Jeong, "Ordered Zigzag Stripes of Polymer Gel/Metal Nanoparticle Composites for Highly Stretchable Conductive Electrodes", Adv. Mater., 23, 2946 (2011). https://doi.org/10.1002/adma.201100639
- I. M. Graz, D. P. J. Cotton, and S. P. Lacour, "Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates", Appl. Phys. Lett., 94, 071902 (2009). https://doi.org/10.1063/1.3076103
- S. Rosset, M. Niklaus, P. Dubois, and H. R. Shea, "Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers", Adv. Funct. Mater., 19, 470 (2009). https://doi.org/10.1002/adfm.200801218
- G. Maggioni, A. Vomiero, S. Carturan, C. Scian, G. Mattei, M. Bazzan, C. d. J. Fernández, P. Mazzoldi, A. Quaranta, and G. D. Mea, "Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation", Appl. Phys. Lett., 85, 5712 (2004). https://doi.org/10.1063/1.1829390
- G. -K. Lau, S. Chun-Kiat Goh, and Li-Lynn Shiau, "Dielectric elastomer unimorph using flexible electrodes of electrolessly deposited (ELD) silver", Sensor. Actuat. A-Phys., 169, 234 (2011). https://doi.org/10.1016/j.sna.2011.04.037
- S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, "Stretchable interconnects for elastic electronic surfaces", Proc. IEEE, 93, 1459 (2005). https://doi.org/10.1109/JPROC.2005.851502
- T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A rubberlike stretchable active matrix using elastic conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
- Y. Li and H. Shimizu, "Toward a Stretchable, Elastic, and Electrically Conductive Nanocomposite: Morphology and Properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/ Multiwalled Carbon Nanotube Composites Fabricated by High-Shear Processing", Macromolecules, 42, 2587 (2009). https://doi.org/10.1021/ma802662c
- K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
- M. Kujawski, J. D. Pearse, and E. Smela, "Elastomers filled with exfoliated graphite as compliant electrodes", Carbon, 48, 2409 (2010). https://doi.org/10.1016/j.carbon.2010.02.040
- T. S. Hansen, K. West, O. Hassager, and N. B. Larsen, "Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers", Adv. Funct. Mater., 17, 3069 (2007). https://doi.org/10.1002/adfm.200601243
- T. A. Kim, H. S. Kim, S. S. Lee, and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012). https://doi.org/10.1016/j.carbon.2011.08.070
- D. S. Gray, J. Tien, and C. S. Chen, "High conductivity elastomeric electronics", Adv. Mater., 16, 393 (2004). https://doi.org/10.1002/adma.200306107
- S. Befahy, S. Yunus, T. Pardoen, P. Bertrand, and M. Troosters, "Stretchable helical gold conductor on silicone rubber microwire", Appl. Phys. Lett., 91, 141911 (2007). https://doi.org/10.1063/1.2793185
- T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates", Appl. Phys. Lett., 85, 3435 (2004). https://doi.org/10.1063/1.1806275
- S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, "Stretchable gold conductors on elastomeric substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
- S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, "Stretchable Interconnects for Elastic Electronic Surfaces", Proc. IEEE, 93, 1459 (2005). https://doi.org/10.1109/JPROC.2005.851502
- D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, "A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates", Science, 311, 208 (2006). https://doi.org/10.1126/science.1121401
- C. Yu and H. Jiang, "Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications", Thin Solid Films, 519, 818 (2010). https://doi.org/10.1016/j.tsf.2010.08.106
- X. Wang, H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms", Adv. Mater., 23, 3090 (2011). https://doi.org/10.1002/adma.201101120
- C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, "Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms", Adv. Mater., 21, 4793 (2009). https://doi.org/10.1002/adma.200901775
- M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of metal interconnects for stretchable electronic circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
- R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, Mater. Sci. Eng. C, 11, 89 (2000). https://doi.org/10.1016/S0928-4931(00)00128-4
- M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, "Elastomeric Conductive Composites Based on Carbon Nanotube Forests", Adv. Mater., 22, 2663 (2010). https://doi.org/10.1002/adma.200904270
- A. Kozinda, Y. Jiang, and L. Lin, "Flexible Energy Storage Devices Based on Lift-Off of CNT Films", Proceedings of 25th IEEE Micro Electro Mechanical Systems Conference, pp. 1233-1236, Paris, France, Jan. 2012
- L. Hu, M. Pasta, F. L. Mantia, L. Cui S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, "Stretchable, Porous, and Conductive Energy Textiles", Nano Lett., 10, 708 (2010). https://doi.org/10.1021/nl903949m
- D. -W. Wang, F. Li, J. Zhao, W. Ren, Z. -G. Chen, J. Tan, Z. -S. Wu, I. Gentle, G. Q. Lu, and H. -M. Cheng, "Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode", ACS Nano, 3, 1745 (2009). https://doi.org/10.1021/nn900297m
- L. Ravagnan, G. Divitini, S. Rebasti, M. Marelli, P. Piseri, and P. Milani, "Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces", J. Phys. D: Appl. Phys., 42, 082002 (2009). https://doi.org/10.1088/0022-3727/42/8/082002
- H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, "Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode", Nano Lett., 10, 4242 (2010). https://doi.org/10.1021/nl102725k
- D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?", Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
- A. Greiner and J. H. Wendorff, "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers", Angew. Chem. Int. Ed., 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
- M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Golzhauser, and A. Greiner, "Preparation of Sub-micrometer Copper Fibers via Electrospinning", Adv. Mater., 18, 2384. (2006). https://doi.org/10.1002/adma.200600103
- D. Li and Y. N. Xia, "Fabrication of Titania Nanofibers by Electrospinning", Nano Lett., 3, 555 (2003). https://doi.org/10.1021/nl034039o
- H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, "Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties", Chem. Mater., 19, 3506 (2007). https://doi.org/10.1021/cm070280i
- B. Kim, J. Lee, and I. Yu, "Electrical properties of singlewall carbon nanotube and epoxy composites", J. Appl. Phys., 94, 6724 (2003). https://doi.org/10.1063/1.1622772
- M. A. Valente, L. C. Costa, S. K. Mendiratta, F. Henry, and L. Ramanitra, "Structural and electrical properties of polystyrene- carbon composites", Solid. State. Commun., 112, 67 (1999). https://doi.org/10.1016/S0038-1098(99)00302-6
- L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76, 894 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO;2-K
- S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
- J. Yang, M. Tian, Q. -X. Jia, J. -H. Shi, L. -Q. Zhang, S. -H. Lim, Z. -Z Yu, and Y. -W. Mai, "Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding", Acta. Mater., 55, 6372 (2007). https://doi.org/10.1016/j.actamat.2007.07.043
- C. -X, Liu and J. -W Choi, "Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing", J. Micromech. Microeng., 8, 085019 (2009)..
- R. hang, M. Baxendale, and T. Peijs. Universal resistivitystrain dependence of carbon nanotube/polymer composites", Phys. Rev. B, 76, 195433 (2007). https://doi.org/10.1103/PhysRevB.76.195433
- L. Ji, M. Stevens, Y. Zhu, Q. Gong, J. Wu, and J. Liang, "Preparation and properties of multi-walled carbon nanotube/ carbon/polystyrene composites", Carbon, 47, 2733 (2009). https://doi.org/10.1016/j.carbon.2009.05.031
- G. Wang, X. Tao, and R. Wang, "Flexible organic light-emitting diodes with a polymeric nanocomposite anode", Nanotechnology, 14, 145201 (2008)..
- S. Stankovich, R. Piner, X. Chen, N. Wu, S. Nguyen, and R. Ruoff, "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)", J. Mater. Chem., 16, 155 (2005).
- N. Srivastava and R. Mehra, "Study of structural, electrical, and dielectric properties of polystyrene/foliated graphite nanocomposite developed via in situ polymerization", J. Appl. Polym. Sci., 109, 3991 (2008). https://doi.org/10.1002/app.28499
- G. Chen, W. Weng, D. Wu, and C. Wu, "PMMA/graphite nanosheets composite and its conducting properties", Eur. Polym. J., 39, 2329 (2003). https://doi.org/10.1016/j.eurpolymj.2003.08.005
- A. Celzard, E. McRae, J. F. Mareche, G. Furdin, M. Dufort, and C. Deleuze, "Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy", J. Phys. Chem. Solids, 57, 715 (1996). https://doi.org/10.1016/0022-3697(95)00337-1
- S. C. Cowin, "Tissue growth and remodeling", Annu. Rev. Biomed. Eng., 6, 77 (2004). https://doi.org/10.1146/annurev.bioeng.6.040803.140250
- J. Kopecek, "Hydrogel biomaterials: A smart future?", Biomaterials, 28, 5185 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.044
- J. Genzer and J. Groenewold, "Soft matter with hard skin: From skin wrinkles to templating and material characterization", Soft Matter, 2, 310 (2006). https://doi.org/10.1039/b516741h
- L. He and L. Qiao, "Pre-tension regulates buckling patterns of soft films with interactions", Europhys. Lett., 80, 14003 (2007). https://doi.org/10.1209/0295-5075/80/14003
- W. Monch and S. Herminghaus, "Elastic instability of rubber films between solid bodies", Europhys. Lett., 53, 525 (2001). https://doi.org/10.1209/epl/i2001-00184-7
- K. Li and L. He, "Deformation and buckling of a pre-stretched soft elastic film induced by spatially modulated electric fields", Int. J. Solids. Struct., 47, 2784 (2010). https://doi.org/10.1016/j.ijsolstr.2010.06.005
- S. Q. Huang, Q. Y. Li, X. Q. Feng, and S. W. Yu, "Pattern instability of a soft elastic thin film under van der Waals forces", Mech. Mater., 38, 88 (2006). https://doi.org/10.1016/j.mechmat.2005.05.012
- V. Shenoy and A. Sharma, "Pattern Formation in a Thin Solid Film with Interactions", Phys. Rev. Lett., 86, 119 (2001). https://doi.org/10.1103/PhysRevLett.86.119
- W. Hong, X. Zhao, J. Zhou, and Z. Suo, "A theory of coupled diffusion and large deformation in polymeric gels", J. Mech. Phys. Solids, 56, 1779 (2008). https://doi.org/10.1016/j.jmps.2007.11.010
- I. Tokarev and S. Minko, "Stimuli-responsive hydrogel thin films" Soft Matter, 5, 511 (2009). https://doi.org/10.1039/b813827c
- B. Li, Y. -P. Cao, X. -Q. Feng, and H. Gao, "Mechanics of morphological instabilities and surface wrinkling in soft materials: a review", Soft Matter, 8, 5728 (2012). https://doi.org/10.1039/c2sm00011c
- M. Guvendiren, S. Yang, and J. A. Burdick, "Hydrogel Patterning: (Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density)", Adv. Funct. Mater., 19, 3038 (2009). https://doi.org/10.1002/adfm.200900622
- S. Singamaneni, M. E. McConney, and V. V. Tsukruk, "Spontaneous Self Folding in Confined Ultrathin Polymer Gel", Adv. Mater., 22, 1263 (2010). https://doi.org/10.1002/adma.200903052
- P. J. Yoo, K. Y. Suh, S. Y. Park, and H. H. Lee, "Physical Self-Assembly of Microstructures by Anisotropic Buckling", Adv. Mater., 14, 1383 (2002). https://doi.org/10.1002/1521-4095(20021002)14:19<1383::AID-ADMA1383>3.0.CO;2-D
- E. P. Chan and A. J. Crosby, "Fabricating Microlens Arrays by Surface Wrinkling", Adv. Mater., 18, 3238 (2006). https://doi.org/10.1002/adma.200601595
- D. Chandra, S. Yang, and P. C. Lin, "Strain responsive concave and convex microlens arrays", Appl. Phys. Lett., 91, 251912 (2007). https://doi.org/10.1063/1.2827185
- H. Mei, R. Huang, J. Y. Chung, C. M. Stafford, and H. -H. Yu, "Buckling modes of elastic thin films on elastic substrates", Appl Phys. Lett., 90, 151902 (2007). https://doi.org/10.1063/1.2720759
- D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
- A. J. Baca, J. H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H. S. Kim, W. M. Choi, D. H. Kim, Y. Huang, and J. A. Rogers, "Semiconductor Wires and Ribbons for High-Performance Flexible Electronics", Angew. Chem. Int. Ed., 47, 5524 (2008). https://doi.org/10.1002/anie.200703238
- W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Biaxially Stretchable "Wavy" Silicon Nanomembranes", Nano Lett., 7, 1655 (2007). https://doi.org/10.1021/nl0706244
- N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin filmsofmetals supported on an elastomeric polymer", Nature, 393, 146 (1998). https://doi.org/10.1038/30193
- Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics", Nature Nanotechnol., 1, 201 (2006). https://doi.org/10.1038/nnano.2006.131
- D. -H. Kim, J. -H. Ahn, W. M. Choi, H. Kim, T. -H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
Cited by
- Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell vol.37, pp.4, 2013, https://doi.org/10.7317/pk.2013.37.4.470
- Facile and scalable fabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells vol.15, pp.6, 2014, https://doi.org/10.1007/s12541-014-0456-0