DOI QR코드

DOI QR Code

Preparation and Property of Flexible/Stretchable Electrodes

유연성/신축성 전극의 제조 및 특성

  • Lee, Gi-Bbeum (Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Nah, Changwoon (Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • 이기쁨 (전북대학교 고분자.나노공학과) ;
  • 나창운 (전북대학교 고분자.나노공학과)
  • Received : 2012.10.23
  • Accepted : 2012.11.09
  • Published : 2012.12.31

Abstract

Flexible/stretchable electronics have recently focused, since their applications extend to emerging flexible displays, sensors, dielectric elastomer actuator and generators, and smart surgical tools. Flexible/stretchable electrodes should be synchronized with employing mechanical deformations of either flexing or stretching modes. Thus, the research area is one of the tough subjects, since the electrodes should keep their basic functions of electrodes under various mode of mechanical deformations. In this review, we discuss the recent development in the preparation and properties of such flexible/stretchable electrodes.

최근 주목을 받고 있는 유연성/신축성 전극소재는 유연디스플레이, 센서, 유전탄성고분자 액추에이터 및 제너레이터, 스마트 수술도구 등과 같은 다양한 분야에서 활용이 가능하다. 유연성/신축성 전극소재는 다양한 형태의 기계적인 변형을 받게 되는데 이때 기계적인 변형에 맞춰 함께 변형될 뿐만 아니라 신축되어야 한다. 따라서 기계적 변형에서도 전극으로써 기능을 유지해야 하기 때문에 대단히 어려운 연구분야라 할 수 있다. 본 총설에서는 최근까지 연구된 유연성/신축성 전극소재의 제조와 특성을 소개하고자 한다.

Keywords

References

  1. R. H. Reuss, B. R. Chalamala, A. Moussessian, M. G. Kane, A. Kumar, D. C. Zhang, J. A. Rogers, M. Hatalis, D. Temple, G. Moddel, B. J. Eliasson, M. J. Estes, J. Kunz, E. Handy, E. S. Harmon, D. B. Salzman, J. M. Woodall, M. A. Alam, J. Murthi, S. C. Jacobson, M. Olivier, D. Markus, P. M. Cambell, and E. Snow, "Macroelectronics: Perspectives on Technology and Applications", Proc. IEEE, 93, 1239 (2005). https://doi.org/10.1109/JPROC.2005.851237
  2. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications", Proc. Natl. Acad. Sci. U.S.A, 101, 9966 (2004). https://doi.org/10.1073/pnas.0401918101
  3. X. Lu, Y. Xia, "Electronic materials: Buckling down for flexible electronics", Nat. Nanotechnol, 1, 163 (2006). https://doi.org/10.1038/nnano.2006.157
  4. D. -H. Kim, J. -H. Ahn, W. M. Choi, H. -S. Kim, T. -H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  5. M. B. Schubert and J. H. Werner, "Flexible Solar Cells for Clothing", Mater. Today, 9, 42 (2006).
  6. G. Corbelli, C. Ghisleri, M. Marelli, P. Milani, and L. Ravagnan, "Highly Deformable Nanostructured Elastomeric Electrodes With Improving Conductivity Upon Cyclical Stretching", Adv. Mater., 23, 4504 (2011). https://doi.org/10.1002/adma.201102463
  7. D. C. Hyun, M. Park, C. Park, Bongsoo Kim, Younan Xia, Jae Hyun Hur, Jong Min Kim, Jong Jin Park, and Unyong Jeong, "Ordered Zigzag Stripes of Polymer Gel/Metal Nanoparticle Composites for Highly Stretchable Conductive Electrodes", Adv. Mater., 23, 2946 (2011). https://doi.org/10.1002/adma.201100639
  8. I. M. Graz, D. P. J. Cotton, and S. P. Lacour, "Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates", Appl. Phys. Lett., 94, 071902 (2009). https://doi.org/10.1063/1.3076103
  9. S. Rosset, M. Niklaus, P. Dubois, and H. R. Shea, "Metal Ion Implantation for the Fabrication of Stretchable Electrodes on Elastomers", Adv. Funct. Mater., 19, 470 (2009). https://doi.org/10.1002/adfm.200801218
  10. G. Maggioni, A. Vomiero, S. Carturan, C. Scian, G. Mattei, M. Bazzan, C. d. J. Fernández, P. Mazzoldi, A. Quaranta, and G. D. Mea, "Structure and optical properties of Au-polyimide nanocomposite films prepared by ion implantation", Appl. Phys. Lett., 85, 5712 (2004). https://doi.org/10.1063/1.1829390
  11. G. -K. Lau, S. Chun-Kiat Goh, and Li-Lynn Shiau, "Dielectric elastomer unimorph using flexible electrodes of electrolessly deposited (ELD) silver", Sensor. Actuat. A-Phys., 169, 234 (2011). https://doi.org/10.1016/j.sna.2011.04.037
  12. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, "Stretchable interconnects for elastic electronic surfaces", Proc. IEEE, 93, 1459 (2005). https://doi.org/10.1109/JPROC.2005.851502
  13. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A rubberlike stretchable active matrix using elastic conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  14. Y. Li and H. Shimizu, "Toward a Stretchable, Elastic, and Electrically Conductive Nanocomposite: Morphology and Properties of Poly[styrene-b-(ethylene-co-butylene)-b-styrene]/ Multiwalled Carbon Nanotube Composites Fabricated by High-Shear Processing", Macromolecules, 42, 2587 (2009). https://doi.org/10.1021/ma802662c
  15. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes", Nature, 457, 706 (2009). https://doi.org/10.1038/nature07719
  16. M. Kujawski, J. D. Pearse, and E. Smela, "Elastomers filled with exfoliated graphite as compliant electrodes", Carbon, 48, 2409 (2010). https://doi.org/10.1016/j.carbon.2010.02.040
  17. T. S. Hansen, K. West, O. Hassager, and N. B. Larsen, "Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers", Adv. Funct. Mater., 17, 3069 (2007). https://doi.org/10.1002/adfm.200601243
  18. T. A. Kim, H. S. Kim, S. S. Lee, and M. Park, "Single-walled carbon nanotube/silicone rubber composites for compliant electrodes", Carbon, 50, 444 (2012). https://doi.org/10.1016/j.carbon.2011.08.070
  19. D. S. Gray, J. Tien, and C. S. Chen, "High conductivity elastomeric electronics", Adv. Mater., 16, 393 (2004). https://doi.org/10.1002/adma.200306107
  20. S. Befahy, S. Yunus, T. Pardoen, P. Bertrand, and M. Troosters, "Stretchable helical gold conductor on silicone rubber microwire", Appl. Phys. Lett., 91, 141911 (2007). https://doi.org/10.1063/1.2793185
  21. T. Li, Z. Huang, Z. Suo, S. P. Lacour, and S. Wagner, "Stretchability of thin metal films on elastomer substrates", Appl. Phys. Lett., 85, 3435 (2004). https://doi.org/10.1063/1.1806275
  22. S. P. Lacour, S. Wagner, Z. Huang, and Z. Suo, "Stretchable gold conductors on elastomeric substrates", Appl. Phys. Lett., 82, 2404 (2003). https://doi.org/10.1063/1.1565683
  23. S. P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, "Stretchable Interconnects for Elastic Electronic Surfaces", Proc. IEEE, 93, 1459 (2005). https://doi.org/10.1109/JPROC.2005.851502
  24. D. Y. Khang, H. Jiang, Y. Huang, and J. A. Rogers, "A Stretchable Form of Single-Crystal Silicon for High-Performance Electronics on Rubber Substrates", Science, 311, 208 (2006). https://doi.org/10.1126/science.1121401
  25. C. Yu and H. Jiang, "Forming wrinkled stiff films on polymeric substrates at room temperature for stretchable interconnects applications", Thin Solid Films, 519, 818 (2010). https://doi.org/10.1016/j.tsf.2010.08.106
  26. X. Wang, H. Hu, Y. Shen, X. Zhou, and Z. Zheng, "Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms", Adv. Mater., 23, 3090 (2011). https://doi.org/10.1002/adma.201101120
  27. C. Yu, C. Masarapu, J. Rong, B. Wei, and H. Jiang, "Stretchable Supercapacitors Based on Buckled Single-Walled Carbon Nanotube Macrofilms", Adv. Mater., 21, 4793 (2009). https://doi.org/10.1002/adma.200901775
  28. M. Gonzalez, F. Axisa, M. V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, "Design of metal interconnects for stretchable electronic circuits", Microelectron. Reliab., 48, 825 (2008). https://doi.org/10.1016/j.microrel.2008.03.025
  29. R. Pelrine, R. Kornbluh, J. Joseph, R. Heydt, Q. Pei, and S. Chiba, Mater. Sci. Eng. C, 11, 89 (2000). https://doi.org/10.1016/S0928-4931(00)00128-4
  30. M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, "Elastomeric Conductive Composites Based on Carbon Nanotube Forests", Adv. Mater., 22, 2663 (2010). https://doi.org/10.1002/adma.200904270
  31. A. Kozinda, Y. Jiang, and L. Lin, "Flexible Energy Storage Devices Based on Lift-Off of CNT Films", Proceedings of 25th IEEE Micro Electro Mechanical Systems Conference, pp. 1233-1236, Paris, France, Jan. 2012
  32. L. Hu, M. Pasta, F. L. Mantia, L. Cui S. Jeong, H. D. Deshazer, J. W. Choi, S. M. Han, and Y. Cui, "Stretchable, Porous, and Conductive Energy Textiles", Nano Lett., 10, 708 (2010). https://doi.org/10.1021/nl903949m
  33. D. -W. Wang, F. Li, J. Zhao, W. Ren, Z. -G. Chen, J. Tan, Z. -S. Wu, I. Gentle, G. Q. Lu, and H. -M. Cheng, "Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode", ACS Nano, 3, 1745 (2009). https://doi.org/10.1021/nn900297m
  34. L. Ravagnan, G. Divitini, S. Rebasti, M. Marelli, P. Piseri, and P. Milani, "Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces", J. Phys. D: Appl. Phys., 42, 082002 (2009). https://doi.org/10.1088/0022-3727/42/8/082002
  35. H. Wu, L. Hu, M. W. Rowell, D. Kong, J. J. Cha, J. R. McDonough, J. Zhu, Y. Yang, M. D. McGehee, and Y. Cui, "Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode", Nano Lett., 10, 4242 (2010). https://doi.org/10.1021/nl102725k
  36. D. Li and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel?", Adv. Mater., 16, 1151 (2004). https://doi.org/10.1002/adma.200400719
  37. A. Greiner and J. H. Wendorff, "Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers", Angew. Chem. Int. Ed., 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  38. M. Bognitzki, M. Becker, M. Graeser, W. Massa, J. H. Wendorff, A. Schaper, D. Weber, A. Beyer, A. Golzhauser, and A. Greiner, "Preparation of Sub-micrometer Copper Fibers via Electrospinning", Adv. Mater., 18, 2384. (2006). https://doi.org/10.1002/adma.200600103
  39. D. Li and Y. N. Xia, "Fabrication of Titania Nanofibers by Electrospinning", Nano Lett., 3, 555 (2003). https://doi.org/10.1021/nl034039o
  40. H. Wu, R. Zhang, X. Liu, D. Lin, and W. Pan, "Electrospinning of Fe, Co, and Ni Nanofibers: Synthesis, Assembly, and Magnetic Properties", Chem. Mater., 19, 3506 (2007). https://doi.org/10.1021/cm070280i
  41. B. Kim, J. Lee, and I. Yu, "Electrical properties of singlewall carbon nanotube and epoxy composites", J. Appl. Phys., 94, 6724 (2003). https://doi.org/10.1063/1.1622772
  42. M. A. Valente, L. C. Costa, S. K. Mendiratta, F. Henry, and L. Ramanitra, "Structural and electrical properties of polystyrene- carbon composites", Solid. State. Commun., 112, 67 (1999). https://doi.org/10.1016/S0038-1098(99)00302-6
  43. L. Flandin, A. Chang, S. Nazarenko, A. Hiltner and E. Baer, "Effect of strain on the properties of an ethylene-octene elastomer with conductive carbon fillers", J. Appl. Polym. Sci., 76, 894 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<894::AID-APP16>3.0.CO;2-K
  44. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, "Graphene-based composite materials", Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  45. J. Yang, M. Tian, Q. -X. Jia, J. -H. Shi, L. -Q. Zhang, S. -H. Lim, Z. -Z Yu, and Y. -W. Mai, "Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding", Acta. Mater., 55, 6372 (2007). https://doi.org/10.1016/j.actamat.2007.07.043
  46. C. -X, Liu and J. -W Choi, "Patterning conductive PDMS nanocomposite in an elastomer using microcontact printing", J. Micromech. Microeng., 8, 085019 (2009)..
  47. R. hang, M. Baxendale, and T. Peijs. Universal resistivitystrain dependence of carbon nanotube/polymer composites", Phys. Rev. B, 76, 195433 (2007). https://doi.org/10.1103/PhysRevB.76.195433
  48. L. Ji, M. Stevens, Y. Zhu, Q. Gong, J. Wu, and J. Liang, "Preparation and properties of multi-walled carbon nanotube/ carbon/polystyrene composites", Carbon, 47, 2733 (2009). https://doi.org/10.1016/j.carbon.2009.05.031
  49. G. Wang, X. Tao, and R. Wang, "Flexible organic light-emitting diodes with a polymeric nanocomposite anode", Nanotechnology, 14, 145201 (2008)..
  50. S. Stankovich, R. Piner, X. Chen, N. Wu, S. Nguyen, and R. Ruoff, "Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)", J. Mater. Chem., 16, 155 (2005).
  51. N. Srivastava and R. Mehra, "Study of structural, electrical, and dielectric properties of polystyrene/foliated graphite nanocomposite developed via in situ polymerization", J. Appl. Polym. Sci., 109, 3991 (2008). https://doi.org/10.1002/app.28499
  52. G. Chen, W. Weng, D. Wu, and C. Wu, "PMMA/graphite nanosheets composite and its conducting properties", Eur. Polym. J., 39, 2329 (2003). https://doi.org/10.1016/j.eurpolymj.2003.08.005
  53. A. Celzard, E. McRae, J. F. Mareche, G. Furdin, M. Dufort, and C. Deleuze, "Composites based on micron-sized exfoliated graphite particles: electrical conduction, critical exponents and anisotropy", J. Phys. Chem. Solids, 57, 715 (1996). https://doi.org/10.1016/0022-3697(95)00337-1
  54. S. C. Cowin, "Tissue growth and remodeling", Annu. Rev. Biomed. Eng., 6, 77 (2004). https://doi.org/10.1146/annurev.bioeng.6.040803.140250
  55. J. Kopecek, "Hydrogel biomaterials: A smart future?", Biomaterials, 28, 5185 (2007). https://doi.org/10.1016/j.biomaterials.2007.07.044
  56. J. Genzer and J. Groenewold, "Soft matter with hard skin: From skin wrinkles to templating and material characterization", Soft Matter, 2, 310 (2006). https://doi.org/10.1039/b516741h
  57. L. He and L. Qiao, "Pre-tension regulates buckling patterns of soft films with interactions", Europhys. Lett., 80, 14003 (2007). https://doi.org/10.1209/0295-5075/80/14003
  58. W. Monch and S. Herminghaus, "Elastic instability of rubber films between solid bodies", Europhys. Lett., 53, 525 (2001). https://doi.org/10.1209/epl/i2001-00184-7
  59. K. Li and L. He, "Deformation and buckling of a pre-stretched soft elastic film induced by spatially modulated electric fields", Int. J. Solids. Struct., 47, 2784 (2010). https://doi.org/10.1016/j.ijsolstr.2010.06.005
  60. S. Q. Huang, Q. Y. Li, X. Q. Feng, and S. W. Yu, "Pattern instability of a soft elastic thin film under van der Waals forces", Mech. Mater., 38, 88 (2006). https://doi.org/10.1016/j.mechmat.2005.05.012
  61. V. Shenoy and A. Sharma, "Pattern Formation in a Thin Solid Film with Interactions", Phys. Rev. Lett., 86, 119 (2001). https://doi.org/10.1103/PhysRevLett.86.119
  62. W. Hong, X. Zhao, J. Zhou, and Z. Suo, "A theory of coupled diffusion and large deformation in polymeric gels", J. Mech. Phys. Solids, 56, 1779 (2008). https://doi.org/10.1016/j.jmps.2007.11.010
  63. I. Tokarev and S. Minko, "Stimuli-responsive hydrogel thin films" Soft Matter, 5, 511 (2009). https://doi.org/10.1039/b813827c
  64. B. Li, Y. -P. Cao, X. -Q. Feng, and H. Gao, "Mechanics of morphological instabilities and surface wrinkling in soft materials: a review", Soft Matter, 8, 5728 (2012). https://doi.org/10.1039/c2sm00011c
  65. M. Guvendiren, S. Yang, and J. A. Burdick, "Hydrogel Patterning: (Swelling-Induced Surface Patterns in Hydrogels with Gradient Crosslinking Density)", Adv. Funct. Mater., 19, 3038 (2009). https://doi.org/10.1002/adfm.200900622
  66. S. Singamaneni, M. E. McConney, and V. V. Tsukruk, "Spontaneous Self Folding in Confined Ultrathin Polymer Gel", Adv. Mater., 22, 1263 (2010). https://doi.org/10.1002/adma.200903052
  67. P. J. Yoo, K. Y. Suh, S. Y. Park, and H. H. Lee, "Physical Self-Assembly of Microstructures by Anisotropic Buckling", Adv. Mater., 14, 1383 (2002). https://doi.org/10.1002/1521-4095(20021002)14:19<1383::AID-ADMA1383>3.0.CO;2-D
  68. E. P. Chan and A. J. Crosby, "Fabricating Microlens Arrays by Surface Wrinkling", Adv. Mater., 18, 3238 (2006). https://doi.org/10.1002/adma.200601595
  69. D. Chandra, S. Yang, and P. C. Lin, "Strain responsive concave and convex microlens arrays", Appl. Phys. Lett., 91, 251912 (2007). https://doi.org/10.1063/1.2827185
  70. H. Mei, R. Huang, J. Y. Chung, C. M. Stafford, and H. -H. Yu, "Buckling modes of elastic thin films on elastic substrates", Appl Phys. Lett., 90, 151902 (2007). https://doi.org/10.1063/1.2720759
  71. D. H. Kim and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  72. A. J. Baca, J. H. Ahn, Y. Sun, M. A. Meitl, E. Menard, H. S. Kim, W. M. Choi, D. H. Kim, Y. Huang, and J. A. Rogers, "Semiconductor Wires and Ribbons for High-Performance Flexible Electronics", Angew. Chem. Int. Ed., 47, 5524 (2008). https://doi.org/10.1002/anie.200703238
  73. W. M. Choi, J. Song, D. Y. Khang, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Biaxially Stretchable "Wavy" Silicon Nanomembranes", Nano Lett., 7, 1655 (2007). https://doi.org/10.1021/nl0706244
  74. N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, "Spontaneous formation of ordered structures in thin filmsofmetals supported on an elastomeric polymer", Nature, 393, 146 (1998). https://doi.org/10.1038/30193
  75. Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang, and J. A. Rogers, "Controlled buckling of semiconductor nanoribbons for stretchable electronics", Nature Nanotechnol., 1, 201 (2006). https://doi.org/10.1038/nnano.2006.131
  76. D. -H. Kim, J. -H. Ahn, W. M. Choi, H. Kim, T. -H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367

Cited by

  1. Effect of Dispersion Control of Multi-walled Carbon Nanotube in High Filler Content Nano-composite Paste for the Fabrication of Counter Electrode in Dye-sensitized Solar Cell vol.37, pp.4, 2013, https://doi.org/10.7317/pk.2013.37.4.470
  2. Facile and scalable fabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells vol.15, pp.6, 2014, https://doi.org/10.1007/s12541-014-0456-0