DOI QR코드

DOI QR Code

Electric Properties of the Laminate Type PTC(Positive Temperature Coefficient of Resistance) Thermistor According to Polymer Blowing Agent

유기발포제에 따른 적층형 PTC(Positive Temperature Coefficient of Resistance) 써미스터의 전기적 특성

  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jong-Hee (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering & Technology)
  • Received : 2012.10.23
  • Accepted : 2012.11.19
  • Published : 2012.12.27

Abstract

The electrical properties of a laminated SMD type PTC thermistor for microcircuit protection were investigated as a function of polymer blowing agent addition. Green ceramics for multilayered $BaTiO_3$-based PTCRs were formed by doctor blade method of barium titanate powders; we successfully laminated the sintered ceramic chips to obtain 10 layer chip PTCRs with PTC effect. The sintered density increases with increasing sintering temperature. The electrical properties of the sintered samples were strongly dependent on the calcination and addition of a polymer blowing agent. When $BaTiO_3$ powders containing 0.2 mol% of $Y_2O_3$ were calcined at $1000^{\circ}C$ for 2 hrs, the resistivity jump was of 1-2 orders of magnitude. The resistivity at room temperature increases according to the polymer blowing agent addition. Also, the sample using the calcined powder showed a lower resistivity than that of the sample prepared using powders without calcinations. With an increase in the OBSH, the magnitude of the resistivity jumped as a function of the temperature increase. The resistivity of the sintered bodies after the addition of 0.5 wt% polymer blowing agent at $1290^{\circ}C$ for 2 h was shown to be about $8.5{\Omega}{\cdot}cm$; the jump order of the sintered bodies was shown to be on the order of $10^2$.

Keywords

References

  1. M. Valant, D. Suvorov, R. C. Pullar, K. Sarma and N. M. Alford, J. Eur. Ceram. Soc., 26, 2777 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.06.026
  2. J. M. Haussonne, G. Desgardin, P. Bajolet and B. Raveau, J. Am. Ceram. Soc., 66(11), 801 (1983). https://doi.org/10.1111/j.1151-2916.1983.tb10566.x
  3. J. Qi, W. Chen, H. Wang, Y. Wang, L. Li, H. L. W. Chan, Sens. Actuators, A, 116, 215 (2004). https://doi.org/10.1016/j.sna.2004.03.064
  4. D. A. Tolino and J. B. Blum, J. Am. Ceram. Soc., 68(11), C-292 (1985).
  5. M. J. Lee, B. N. Kim, J. H. Hwang, J. H. Kim, S. C. Park and J. B. Song, J. Kor. Ceram. Soc., 48(6), 525 (2011) (in Korean). https://doi.org/10.4191/kcers.2011.48.6.525
  6. Y. K. Chung and S. C. Choi, J. Kor. Ceram. Soc., 46(3), 330 (2009) (in Korean). https://doi.org/10.4191/KCERS.2009.46.3.330
  7. J. -G. Kim, J. -G. Ha, T. -W. Lim and K. Park, Mater. Lett., 60, 1505 (2006). https://doi.org/10.1016/j.matlet.2005.11.061
  8. H. J. Kwon, J. S. Lee, Y. S. Lee, D. K. Lee and Y. H. Lee, J. Kor. Sensor. Soc., 1(1), 67 (1992) (in Korean).
  9. I. C. Ho and S. L. Fu, J. Am. Ceram. Soc., 75(3), 728 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb07869.x
  10. S. K. Jo and Y. H. Han, Jpn. J. Appl. Phys., 46(3A), 1076 (2007). https://doi.org/10.1143/JJAP.46.1076
  11. H. M. Al-Allak, G. J. Russell and J. Woods, J. Phys. D: Appl. Phys., 20(12), 1645 (1987). https://doi.org/10.1088/0022-3727/20/12/016
  12. V. Shut, S. Kostomarov and A. Gavrilov, J. Mater. Sci., 43(12), 5251 (2008). https://doi.org/10.1007/s10853-008-2769-9
  13. M. Kuwabara, J. Am. Ceram. Soc., 64, C-170 (1981).
  14. J. G. Kim, W. S. Cho and K. Park, Mater. Sci. Eng., B, 77, 255 (2000). https://doi.org/10.1016/S0921-5107(00)00496-7