DOI QR코드

DOI QR Code

Effects of Hovenia dulcis Thunberg Extract on Enzymes Related Reactive Oxygen Intermediate

헛개나무(Hovenia dulcis Thunberg) 추출물이 활성 산소종과 관련한 효소에 미치는 영향

  • 김은호 (국립과학수사연구원 법과학부 화학분석과) ;
  • 이광수 (장안대학교 건강과학부 식품영양과)
  • Received : 2012.11.20
  • Accepted : 2012.12.07
  • Published : 2012.12.31

Abstract

In order to investigate the effects of 70% EtOH extract obtained from Hovenia dulcis Thunberg on enzymes relating reactive oxygen intermediate, cancer-stricken animals induced by DEN (N,N-diethylnitrosamine) were recovered by administering the extract of Hovenia dulcis Thunberg. It showed that there was no effect on the generation of superoxide radical by the extract of Hovenia dulcis Thunberg. However, considering the increase of the activity of Cu, Zn-SOD and Mn-SOD in the tested animal class, the extract of Hovenia dulcis Thunberg could participate directly in removing of superoxides. The experimented-animals treated with the extract of Hovenia dulcis Thunberg showed an increase in the activity of the enzymes, catalase and glutathione peroxidase, which can eliminate hydrogen peroxide pertained in liver tissue. The extract of Hovenia dulcis Thunberg seemed to have some factors that accelerate the oxidation. Also, the extract of Hovenia dulcis Thunberg showed effects on the enzymes relating to the active oxygen toxicity which could be an indicator of aging and body toxicity.

Keywords

References

  1. Aust SD, Morehouse LA, Thomas CE. 1985. Role of metals in oxygen radical reactions. J Free Radic Biol Med 1:3-25 https://doi.org/10.1016/0748-5514(85)90025-X
  2. Borrello S, De Leo, ME, Galeotti T. 1993. Defective gene expression of Mn-SOD in cancer cells. Mol Aspects Med 14:253-258 https://doi.org/10.1016/0098-2997(93)90012-3
  3. Demple B, Amabile-Cuevas CF. 1991. Redox redux: the control of oxidative stress responses. Cell 67:837-839 https://doi.org/10.1016/0092-8674(91)90355-3
  4. Fried R, Fried LW. 1974. Xanthine oxidase (xanthine dehydrogenase) In Methods of Enzymatic Analysis 2nd ed. Bergmyer, H. U. (ed.), vol. 2, pp. 644-649 New York and London, Academic Press
  5. Geller BL, Winge DR. 1982. Rat liver Cu,Zn-superoxide dismutase. Subcellular location in lysosomes. J Biol Chem 257:8945- 8952
  6. Halliwell B, Gutteridge JMC. 1985 The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 8:89-93 https://doi.org/10.1016/0098-2997(85)90001-9
  7. Halliwell B, Gutteridge JMC. 1999. Free Radicals in Biology and Medicine. 3rd ed. Oxford University Press, Oxford
  8. Hase K. Ohsugi M. 1997. Hepatoprotective effect of Hovenia dulcis Thunberg on experimental liver injuries induced by carbon-tetrachloride of D-galactosamine/lipopolysaccharide. Biological & Pharmaceutical Bulletin 41:381-385
  9. Kogawa K, Muramatsu H, Tanaka M, Nishihori Y, Hagiwara S, Kuribayashi K, Nakamura K, Koike K, Sakamaki S, Niitsu Y. 1999. Enhanced inhibition of experimental metastasis by the combination chemotherapy of Cu-Zn SOD and adriamycin. Clin Exp Metastasis 17:239-244 https://doi.org/10.1023/A:1006633616629
  10. Kolaja KL, Xu Y, Walborg EF Jr., Stevenson DE, Klaunig JE. 1998. Vitamin E modulation of dieldrin-induced hepatic focal lesion growth in mice. J Toxicol Environ Health A 53:479- 492 https://doi.org/10.1080/009841098159196
  11. Leclere V, Bechet M, Blondeau R. 2004. Functional significance of a periplasmic Mn-superoxide dismutase from Aeromonas hydrophila. J Appl Microbiol 96:828-833 https://doi.org/10.1111/j.1365-2672.2004.02231.x
  12. McCord JM. 1985. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312:159-163 https://doi.org/10.1056/NEJM198501173120305
  13. McCord, JM, Fridovich I. 1969. Superoxide dismutase: Enzymic function for erythocuprein (hematocuprein) J Bol Chem 244:6049-6055
  14. Miller AF. 2004. Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8:162-168 https://doi.org/10.1016/j.cbpa.2004.02.011
  15. Monteiro HP, Stern A. 1996. Redox modulation of tyrosine phosphorylation-dependent signal trasduction pathways. Free Radic Biol Med 21:323-333 https://doi.org/10.1016/0891-5849(96)00051-2
  16. Naqui A, Chance B. 1986. Enhanced superoxide dismutase activity of pulsed cytochrome oxidase. Biochem Biophys Res Commun Apr 14;136:433-437 https://doi.org/10.1016/0006-291X(86)90929-0
  17. Oberley TD, Oberley LW. 1997. Antioxidant enzyme levels in cancer. Histol Histopathol 12:525-535
  18. Okuma Y, Ishikawa H, Ito Y, Hayashi Y, Endo A, Watanabe T. 1995. Effect of extracts from Hovenia dulcis Thunberg on alcohol concentration in rat and men administered alcohol. 日本榮養.食糧學會誌 48:167-172
  19. Rossi F, Bellavite P, Papini E. 1986. Respiratory response of phagocytes: terminal NADPH oxidase and the mechanisms of its activation. Ciba Found Symp 118:172-195
  20. Roy RS, McCord JM. 1983. Oxyradicals and their scarvenger systems. Cellular and Medical Aspects, (Greenwald RA, and Cohen G, eds). Vol. II, pp. 145-153. Elservier Science Publishing Co., Inc., New York
  21. Salin ML, Da ED Jr, Crapo JD. 1978. Isolation and characterization of manganese-containing superoxide dismutase from rat liver. Arch Biochem. Biophys 187:223-228 https://doi.org/10.1016/0003-9861(78)90027-9
  22. Sassa K, Mizushima Y, Fujishita T, Oosaki R, Kobayashi M. 1999. Therapeutic effect of clarithromycin on a transplanted tumor in rats. Antimicrob Agents Chemother 43:67-72
  23. Seo HG, Kim HJ, Ko YS, Pyo HS, Kang YJ, Lee YS, Park MK, Yun-Choi HS, Chang KC. 2004. Induction of manganesesuperoxide dismutase by YS 51, a synthetic 1-(beta-naphtylmethyl) 6,7-dihydroxy-1,2,3,4-tetrahydro-isoquinoline alkaloid. Implication for anti-inflammatory actions. Pharmacology 71: 57-65 https://doi.org/10.1159/000076941
  24. Turrens JF, Freeman BA, Levitt JG, Crapo JD. 1982. The effect of hyperoxia on superoxide production by lung submitochondrial particles. Arch Biochem Biophys Sep;217:401-410 https://doi.org/10.1016/0003-9861(82)90518-5
  25. Yoshikawa MT, Murakami T, Ueda S, Yoshizumi K, Ninomiya N, Murakami, H, Matsuda M, Saito W, Fujii T, Tanaka Yamahara J. 1997. Bioactive constituents of natural medicines, III, Asolute stereostructures of new dihydroflavonols, hovenitins I, II, and III, isolated from hoveniae semen seu fructus, the seed and fruit of Hovenia dulcis Thunberg (Rhamnaceae): inhibitory effect on alcoholinduced muscular relaxation and hepatoprotective activity. Yakugaku Zassbi 117:108-118 https://doi.org/10.1248/yakushi1947.117.2_108
  26. Zhang Z, Oliver P, Lancaster JR, Schwarzenberger PO, Joshi MS, Cork J, Kolls JK. 2001. Reactive oxygen species mediate tumor necrosis factor alpha-converting, enzyme-dependent ectodomain shedding induced by phorbol myristate acetate. FASEB J Feb;15:303-5. Epub 2000 Dec 08 https://doi.org/10.1096/fj.00-0371fje

Cited by

  1. 헛개나무열매 열수추출물 투여에 의한 흰쥐의 지구력 향상 효과 vol.33, pp.4, 2012, https://doi.org/10.9799/ksfan.2020.33.4.363