DOI QR코드

DOI QR Code

Influence of CO2 concentration on carbon concentrating mechanisms in cyanobacteria and green algae: a proteomic approach

  • Ramanan, Rishiram (Environmental Health Division, National Environmental Engineering Research Institute (NEERI)) ;
  • Vinayagamoorthy, Nadimuthu (Environmental Health Division, National Environmental Engineering Research Institute (NEERI)) ;
  • Sivanesan, Saravana Devi (Environmental Health Division, National Environmental Engineering Research Institute (NEERI)) ;
  • Kannan, Krishnamurthi (Environmental Health Division, National Environmental Engineering Research Institute (NEERI)) ;
  • Chakrabarti, Tapan (Environmental Health Division, National Environmental Engineering Research Institute (NEERI))
  • Received : 2012.07.16
  • Accepted : 2012.10.30
  • Published : 2012.12.15

Abstract

Carbon concentrating mechanisms play a vital role in photosynthesis in microalgae and cyanobacteria especially in the proper functioning of Rubisco and assimilation of carbon via the Calvin cycle. This study evaluates the role of carbon dioxide on carbon concentrating mechanism (CCM) in a cynaobacteria, Spirulina platensis and a microalga, Chlorella sp. 786. The study organisms were grown in both atmospheric (control sample, 0.035%) and high (exposed sample, 10%) $CO_2$ concentrations. Second dimension (2D) electrophoresis revealed a huge difference in the protein profiles of both organisms suggesting the induction of CCM related proteins in the sample maintained at atmospheric $CO_2$ concentration and the repression of CCM related proteins in the sample maintained at 10% $CO_2$. Liquid chromatography-mass spectroscopy analysis revealed the presence of two important $C_i$ transporter proteins in the control sample of S. platensis, namely ferredoxin-$NADP^+$ reductase and ATP binding cassette (ABC) transport system protein. These proteins were only expressed in the control sample and were downregulated or not expressed at all in the exposed sample. Consequently, this study conclusively proves that CCMs are only inducted at low $CO_2$ concentrations and are not functional at high $CO_2$ concentration.

Keywords

References

  1. Atteia, A., Adrait, A., Brugiere, S., Tardif, M., van Lis, R., Deusch, O., Dagan, T., Kuhn, L., Gontero, B., Martin, W., Garin, J., Joyard, J. & Rolland, N. 2009. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the $\alpha$-proteobacterial mitochondrial ancestor. Mol. Biol. Evol. 26:1533-1548. https://doi.org/10.1093/molbev/msp068
  2. Baba, M., Suzuki, I. & Shiraiwa, Y. 2011. Proteomic analysis of high-$CO_{2}$-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant Cell Physiol. 52:1302-1314. https://doi.org/10.1093/pcp/pcr078
  3. Beardall, J., Johnston, A. & Raven, J. 1998. Environmental regulation of $CO_{2}$-concentrating mechanisms in microalgae. Can. J. Bot. 76:1010-1017.
  4. Cannon, G. C., Heinhorst, S. & Kerfeld, C. A. 2010. Carboxysomal carbonic anhydrases: structure and role in microbial $CO_{2}$ fixation. Biochim. Biophys. Acta 1804:382-392. https://doi.org/10.1016/j.bbapap.2009.09.026
  5. Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S. S., Pellegrini, M., Ladunga, I., Liu, P. & Spalding, M. H. 2012. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the $CO_{2}$-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876-1893. https://doi.org/10.1105/tpc.112.097949
  6. Fukuzawa, H., Miura, K., Ishizaki, K., Kucho, K., Saito, T., Kohinata, T. & Ohyama, K. 2001. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing $CO_{2}$ availability. Proc. Natl. Acad. Sci. U. S. A. 98:5347- 5352. https://doi.org/10.1073/pnas.081593498
  7. Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A. S., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S. S. & Chakrabarti, T. 2010. Bio-mitigation of $CO_{2}$, calcite formation and simultaneous biodiesel production using Chlorella sp. Bioresour. Technol. 101:8473-8476. https://doi.org/10.1016/j.biortech.2010.06.012
  8. Giordano, M., Beardall, J. & Raven, J. A. 2005. $CO_{2}$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131. https://doi.org/10.1146/annurev.arplant.56.032604.144052
  9. Guedeney, G., Corneille, S., Cuine, S. & Peltier, G. 1996. Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett. 387:277-280.
  10. Kaplan, A. & Reinhold, L. 1999. $CO_{2}$ concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:539-570. https://doi.org/10.1146/annurev.arplant.50.1.539
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-75.
  12. Moroney, J. V. & Somanchi, A. 1999. How do algae concentrate $CO_{2}$ to increase the efficiency of photosynthetic carbon fixation. Plant Physiol. 119:9-16. https://doi.org/10.1104/pp.119.1.9
  13. Moroney, J. V. & Ynalvez, R. A. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot. Cell 6:1251-1259. https://doi.org/10.1128/EC.00064-07
  14. Prentice, I. C. 2001. The carbon cycle and atmospheric carbon dioxide. In Houghton, J. T., Ding, Y., Griggs, D. J., Nogure, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 183-237.
  15. Price, G. D., Badger, M. R., Woodger, F. J. & Long, B. M. 2008. Advances in understanding the cyanobacterial $CO_{2}$-concentrating-mechanism (CCM): functional components, $C_{i}$ transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59: 1441-1461.
  16. Price, G. D., Maeda, S. -I., Omata, T. & Badger, M. R. 2002. Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct. Plant Biol. 29:131-149. https://doi.org/10.1071/PP01229
  17. Ramanan, R., Kannan, K., Deshkar, A., Yadav, R. & Chakrabarti, T. 2010. Enhanced algal $CO_{2}$ sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour. Technol. 101:2616-2622. https://doi.org/10.1016/j.biortech.2009.10.061
  18. Renberg, L., Johansson, A. I., Shutova, T., Stenlund, H., Aksmann, A., Raven, J. A., Gardeström, P., Moritz, T. & Samuelsson, G. 2010. A metabolomic approach to study major metabolite changes during acclimation to limiting $CO_{2}$ in Chlamydomonas reinhardtii. Plant Physiol. 154:187-196. https://doi.org/10.1104/pp.110.157651
  19. Spalding, M. H., Van, K., Wang, Y. & Nakamura, Y. 2002. Acclimation of Chlamydomonas to changing carbon availability. Funct. Plant Biol. 29:221-230. https://doi.org/10.1071/PP01182
  20. Stauber, E. J. & Hippler, M. 2004. Chlamydomonas reinhardtii proteomics. Plant Physiol. Biochem. 42:989-1001. https://doi.org/10.1016/j.plaphy.2004.09.008
  21. Van, K., Wang, Y., Nakamura, Y. & Spalding, M. H. 2001. Insertional mutants of Chlamydomonas reinhardtii that require elevated $CO_{2}$ for survival. Plant Physiol. 127:607- 614. https://doi.org/10.1104/pp.010333
  22. Vance, P. & Spalding, M. H. 2005. Growth, photosynthesis, and gene expression in Chlamydomonas over a range of $CO_{2}$ concentrations and $CO_{2}$/$O_{2}$ ratios: $CO_{2}$ regulates multiple acclimation states. Can. J. Bot. 83:796-809. https://doi.org/10.1139/b05-064
  23. Wienkoop, S., Wei, J., May, P., Kempa, S., Irgang, S., Recuenco- Munoz, L., Pietzke, M., Schwemmer, T., Rupprecht, J., Egelhofer, V. & Weckwerth, W. 2010. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol. Biosyst. 6:1018-1031. https://doi.org/10.1039/b920913a
  24. Yamano, T. & Fukuzawa, H. 2009. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J. Basic Microbiol. 49:42-51. https://doi.org/10.1002/jobm.200800352
  25. Yamano, T., Miura, K. & Fukuzawa, H. 2008. Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 147:340-354. https://doi.org/10.1104/pp.107.114652

Cited by

  1. Proteomic approaches in research of cyanobacterial photosynthesis vol.126, pp.1, 2015, https://doi.org/10.1007/s11120-014-0050-4
  2. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production vol.29, 2015, https://doi.org/10.1016/j.ymben.2015.03.002
  3. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144206
  4. Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review vol.6, pp.9, 2013, https://doi.org/10.3390/en6094607
  5. Co vol.8, pp.30, 2018, https://doi.org/10.1039/C8RA01626G
  6. Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801 vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-42576-1