References
-
Atteia, A., Adrait, A., Brugiere, S., Tardif, M., van Lis, R., Deusch, O., Dagan, T., Kuhn, L., Gontero, B., Martin, W., Garin, J., Joyard, J. & Rolland, N. 2009. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the
$\alpha$ -proteobacterial mitochondrial ancestor. Mol. Biol. Evol. 26:1533-1548. https://doi.org/10.1093/molbev/msp068 -
Baba, M., Suzuki, I. & Shiraiwa, Y. 2011. Proteomic analysis of high-
$CO_{2}$ -inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant Cell Physiol. 52:1302-1314. https://doi.org/10.1093/pcp/pcr078 -
Beardall, J., Johnston, A. & Raven, J. 1998. Environmental regulation of
$CO_{2}$ -concentrating mechanisms in microalgae. Can. J. Bot. 76:1010-1017. -
Cannon, G. C., Heinhorst, S. & Kerfeld, C. A. 2010. Carboxysomal carbonic anhydrases: structure and role in microbial
$CO_{2}$ fixation. Biochim. Biophys. Acta 1804:382-392. https://doi.org/10.1016/j.bbapap.2009.09.026 -
Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S. S., Pellegrini, M., Ladunga, I., Liu, P. & Spalding, M. H. 2012. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the
$CO_{2}$ -concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876-1893. https://doi.org/10.1105/tpc.112.097949 -
Fukuzawa, H., Miura, K., Ishizaki, K., Kucho, K., Saito, T., Kohinata, T. & Ohyama, K. 2001. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing
$CO_{2}$ availability. Proc. Natl. Acad. Sci. U. S. A. 98:5347- 5352. https://doi.org/10.1073/pnas.081593498 -
Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A. S., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S. S. & Chakrabarti, T. 2010. Bio-mitigation of
$CO_{2}$ , calcite formation and simultaneous biodiesel production using Chlorella sp. Bioresour. Technol. 101:8473-8476. https://doi.org/10.1016/j.biortech.2010.06.012 -
Giordano, M., Beardall, J. & Raven, J. A. 2005.
$CO_{2}$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131. https://doi.org/10.1146/annurev.arplant.56.032604.144052 - Guedeney, G., Corneille, S., Cuine, S. & Peltier, G. 1996. Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett. 387:277-280.
-
Kaplan, A. & Reinhold, L. 1999.
$CO_{2}$ concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:539-570. https://doi.org/10.1146/annurev.arplant.50.1.539 - Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-75.
-
Moroney, J. V. & Somanchi, A. 1999. How do algae concentrate
$CO_{2}$ to increase the efficiency of photosynthetic carbon fixation. Plant Physiol. 119:9-16. https://doi.org/10.1104/pp.119.1.9 - Moroney, J. V. & Ynalvez, R. A. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot. Cell 6:1251-1259. https://doi.org/10.1128/EC.00064-07
- Prentice, I. C. 2001. The carbon cycle and atmospheric carbon dioxide. In Houghton, J. T., Ding, Y., Griggs, D. J., Nogure, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 183-237.
-
Price, G. D., Badger, M. R., Woodger, F. J. & Long, B. M. 2008. Advances in understanding the cyanobacterial
$CO_{2}$ -concentrating-mechanism (CCM): functional components,$C_{i}$ transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59: 1441-1461. - Price, G. D., Maeda, S. -I., Omata, T. & Badger, M. R. 2002. Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct. Plant Biol. 29:131-149. https://doi.org/10.1071/PP01229
-
Ramanan, R., Kannan, K., Deshkar, A., Yadav, R. & Chakrabarti, T. 2010. Enhanced algal
$CO_{2}$ sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour. Technol. 101:2616-2622. https://doi.org/10.1016/j.biortech.2009.10.061 -
Renberg, L., Johansson, A. I., Shutova, T., Stenlund, H., Aksmann, A., Raven, J. A., Gardeström, P., Moritz, T. & Samuelsson, G. 2010. A metabolomic approach to study major metabolite changes during acclimation to limiting
$CO_{2}$ in Chlamydomonas reinhardtii. Plant Physiol. 154:187-196. https://doi.org/10.1104/pp.110.157651 - Spalding, M. H., Van, K., Wang, Y. & Nakamura, Y. 2002. Acclimation of Chlamydomonas to changing carbon availability. Funct. Plant Biol. 29:221-230. https://doi.org/10.1071/PP01182
- Stauber, E. J. & Hippler, M. 2004. Chlamydomonas reinhardtii proteomics. Plant Physiol. Biochem. 42:989-1001. https://doi.org/10.1016/j.plaphy.2004.09.008
-
Van, K., Wang, Y., Nakamura, Y. & Spalding, M. H. 2001. Insertional mutants of Chlamydomonas reinhardtii that require elevated
$CO_{2}$ for survival. Plant Physiol. 127:607- 614. https://doi.org/10.1104/pp.010333 -
Vance, P. & Spalding, M. H. 2005. Growth, photosynthesis, and gene expression in Chlamydomonas over a range of
$CO_{2}$ concentrations and$CO_{2}$ /$O_{2}$ ratios:$CO_{2}$ regulates multiple acclimation states. Can. J. Bot. 83:796-809. https://doi.org/10.1139/b05-064 - Wienkoop, S., Wei, J., May, P., Kempa, S., Irgang, S., Recuenco- Munoz, L., Pietzke, M., Schwemmer, T., Rupprecht, J., Egelhofer, V. & Weckwerth, W. 2010. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol. Biosyst. 6:1018-1031. https://doi.org/10.1039/b920913a
- Yamano, T. & Fukuzawa, H. 2009. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J. Basic Microbiol. 49:42-51. https://doi.org/10.1002/jobm.200800352
- Yamano, T., Miura, K. & Fukuzawa, H. 2008. Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 147:340-354. https://doi.org/10.1104/pp.107.114652
Cited by
- Proteomic approaches in research of cyanobacterial photosynthesis vol.126, pp.1, 2015, https://doi.org/10.1007/s11120-014-0050-4
- Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803 enhances biomass production vol.29, 2015, https://doi.org/10.1016/j.ymben.2015.03.002
- Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate vol.10, pp.12, 2015, https://doi.org/10.1371/journal.pone.0144206
- Effects of Environmental Factors and Nutrient Availability on the Biochemical Composition of Algae for Biofuels Production: A Review vol.6, pp.9, 2013, https://doi.org/10.3390/en6094607
- Co vol.8, pp.30, 2018, https://doi.org/10.1039/C8RA01626G
- Elevated carbon dioxide levels lead to proteome-wide alterations for optimal growth of a fast-growing cyanobacterium, Synechococcus elongatus PCC 11801 vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-42576-1