DOI QR코드

DOI QR Code

Detection of Polyhydroxyalkanoate-Accumulating Bacteria from Domestic Wastewater Treatment Plant Using Highly Sensitive PCR Primers

  • Huang, Yu-Tzu (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University) ;
  • Chen, Pi-Ling (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University) ;
  • Semblante, Galilee Uy (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University) ;
  • You, Sheng-Jie (Department of Bioenvironmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University)
  • Received : 2011.11.15
  • Accepted : 2012.04.16
  • Published : 2012.08.28

Abstract

Polyhydroxyalkanoate (PHA) is a class of biodegradable plastics that have great potential applications in the near future. In this study, the micro-biodiversity and productivity of PHA-accumulating bacteria in activated sludge from a domestic wastewater treatment plant were investigated. A previously reported primer set and a self-designed primer set (phaCF1BO/phaCR2BO) were both used to amplify the PHA synthase (phaC) gene of isolated colonies. The new primers demonstrated higher sensitivity for phaC, and combining the PCR results of the two primer sets was able to widen the range of detected genera and raise the sensitivity to nearly 90%. Results showed that 85.3% of the identified bacteria were Gram-negative, with Ralstonia as the dominant genus, and 14.7% were Gram-positive. In addition, Zoogloea and Rhizobium contained the highest amounts of intracellular PHA. It is apparent that glucose was a better carbon source than pentone or tryptone for promoting PHA production in Micrococcus. Two different classes, class I and class II, of phaC were detected from alphaproteobacteria, betaproteobacteria, and gammaproteobacteria, indicating the wide diversity of PHA-accumulating bacteria in this particular sampling site. Simultaneous wastewater treatment and PHA production is promising by adopting the high PHA-accumulating bacteria isolated from activated sludge.

Keywords

References

  1. Amann, R. I., W. Ludwig, and K. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
  2. Bengtsson, S., A. Werker, M. Christensson, and T. Welander. 2008. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour. Technol. 99: 509-516. https://doi.org/10.1016/j.biortech.2007.01.020
  3. Cerrone, F., M. Sanchez-Peinado, B. Juarez-Jimenez, J. Gonzalez-Lopez, and C. Pozo. 2010. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): Polyhydroxyalkanoates (PHAs) production by Azotobacter strains. J. Microbiol. Biotechnol. 20: 594-601.
  4. Chakravarty, P., V. Mhaisalkar, and T. Chakrabarti. 2010. Study on poly-hydroxyalkanoate (PHA) production in pilot scale continuous mode wastewater treatment system. Bioresour. Technol. 101: 2896-2899. https://doi.org/10.1016/j.biortech.2009.11.097
  5. Chanprateep, S. 2010. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 110: 621-632. https://doi.org/10.1016/j.jbiosc.2010.07.014
  6. Chua, A. S. M., H. Takabatake, H. Satoh, and T. Mino. 2003. Production of polyhydroxyalkanoates (PHA) by activated sludge treating municipal wastewater: Effect of pH, sludge retention time (SRT), and acetate concentration in influent. Water Res. 37: 3602-3611. https://doi.org/10.1016/S0043-1354(03)00252-5
  7. Ciesielski, S., A. Cydzik-Kwiatkowska, T. Pokoj, and E. Klimiuk. 2006. Molecular detection and diversity of mediumchain-length polyhydroxyalkanoates-producing bacteria enriched from activated sludge. J. Appl. Microbiol. 101: 190-199. https://doi.org/10.1111/j.1365-2672.2006.02973.x
  8. Ciesielski, S., P. Tomasz, and E. Klimiuk. 2010. Cultivationdependent and -independent characterization of microbial community producing polyhydroxyalkanoates from rawglycerol. J. Microbiol. Biotechnol. 20: 853-861. https://doi.org/10.4014/jmb.0909.09038
  9. Ferris, M. J., G. Muyzer, and D. M. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 340-346.
  10. Gomez, J. G. C., M. F. A. Rodrigues, R. C. P. Alli, B. B. Torres, C. L. B. Netto, M. S. Oliveira, and L. F. da Silva. 1996. Evaluation of soil Gram-negative bacteria yielding polyhydroxyalkanoic acids from carbohydrates and propionic acid. Appl. Microbiol. Biotechnol. 45: 785-791. https://doi.org/10.1007/s002530050763
  11. Heuer, H., M. Krsek, P. Baker, K. Smalla, and E. Wellington. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
  12. Khardenavis, A. A., M. S. Kumar, S. N. Mudliar, and T. Chakrabarti. 2007. Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly beta-hydroxybutyrate. Bioresour. Technol. 98: 3579-3584. https://doi.org/10.1016/j.biortech.2006.11.024
  13. Kim, Y. and R. Lenz. 2001. Polyesters from microorganisms. Adv. Biochem. Eng. Biotechnol. 71: 51-79.
  14. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522.
  15. Mengmeng, C., C. Hong, Z. Qingliang, S. N. Shirley, and R. Jie. 2009. Optimal production of polyhydroxyalkanoates (PHA) in activated sludge fed by volatile fatty acids (VFAs) generated from alkaline excess sludge fermentation. Bioresour. Technol. 100: 1399-1405. https://doi.org/10.1016/j.biortech.2008.09.014
  16. Reddy, C. S. K., R. Ghai, Rashmi, and V. C. Kalia. 2003. Polyhydroxyalkanoates: An overview. Bioresour. Technol. 87: 137-146. https://doi.org/10.1016/S0960-8524(02)00212-2
  17. Shah, A. A., F. Hasan, and A. Hameed. 2010. Degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by a newly isolated Actinomadura sp. AF-555, from soil. Int. Biodeteriol. Biodegrad. 64: 281-285. https://doi.org/10.1016/j.ibiod.2009.10.012
  18. Shamala, T. R., A. Chandrashekar, S. V. N. Vijayendra, and L. Kshama. 2003. Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J. Appl. Microbiol. 94: 369-374. https://doi.org/10.1046/j.1365-2672.2003.01838.x
  19. Sheu, D. S., Y. T. Wang, and C. Y. Lee. 2000. Rapid detection of polyhydroxyalkanoate-accumulating bacteria isolated from the environment by colony PCR. Microbiology 146: 2019-2025.
  20. Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2000. Rapid and specific identification of medium-chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl. Microbiol. Biotechnol. 53: 690-694. https://doi.org/10.1007/s002530000332
  21. Solaiman, D. K. Y., R. D. Ashby, and T. A. Foglia. 2002. Synthesis of poly(hydroxyalkanoates) by Escherichia coli expressing mutated and chimeric PHA synthase genes. Biotechnol. Lett. 24: 1011-1016. https://doi.org/10.1023/A:1015685229489
  22. Steinbuchel, A. and T. Lutke-Eversloh. 2003. Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81-96. https://doi.org/10.1016/S1369-703X(03)00036-6
  23. Suriyamongkol, P., R. Weselake, S. Narine, M. Moloney, and S. Shah. 2007. Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review. Biotechnol. Adv. 25: 148-175. https://doi.org/10.1016/j.biotechadv.2006.11.007
  24. Taguchi, S., H. Nakamura, T. Kichise, T. Tsuge, I. Yamato, and Y. Doi. 2003. Production of polyhydroxyalkanoate (PHA) from renewable carbon sources in recombinant Ralstonia eutropha using mutants of original PHA synthase. Biochem. Eng. J. 16: 107-113. https://doi.org/10.1016/S1369-703X(03)00027-5
  25. Tsuge, T. 2002. Metabolic improvements and use of inexpensive carbon sources in microbial production of polyhydroxyalkanoates. J. Biosci. Bioeng. 94: 579-584.

Cited by

  1. Sludge minimization in municipal wastewater treatment by polyhydroxyalkanoate (PHA) production vol.22, pp.10, 2015, https://doi.org/10.1007/s11356-014-3268-y
  2. Polymerase chain reaction-based screening method applicable universally to environmental haloarchaea and halobacteria for identifying polyhydroxyalkanoate producers among them vol.19, pp.5, 2012, https://doi.org/10.1007/s00792-015-0775-9
  3. Characterisation of open, mixed microbial cultures for polyhydroxyalkanoate (PHA) production vol.15, pp.4, 2016, https://doi.org/10.1007/s11157-016-9411-0
  4. Molecular Diagnostic for Prospecting Polyhydroxyalkanoate-Producing Bacteria vol.4, pp.2, 2012, https://doi.org/10.3390/bioengineering4020052
  5. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities vol.37, pp.1, 2012, https://doi.org/10.1016/j.nbt.2016.10.008
  6. Enrichment of a mixed microbial culture of PHA-storing microorganisms by using fermented hardwood spent sulfite liquor vol.56, pp.None, 2012, https://doi.org/10.1016/j.nbt.2019.12.003