DOI QR코드

DOI QR Code

Improving Cellulase Production in Trichoderma koningii Through RNA Interference on ace1 Gene Expression

  • Wang, Shao-Wen (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Xing, Miao (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Liu, Gang (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Yu, Shao-Wen (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Wang, Juan (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University) ;
  • Tian, Sheng-Li (College of Life Science, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University)
  • Received : 2011.12.19
  • Accepted : 2012.04.10
  • Published : 2012.08.28

Abstract

Ribonucleic acid interference (RNAi) inhibits the expression of target genes in a sequence-specific manner, and shows potential for gene knockdown in filamentous fungi, in which the locus-specific gene knockout occurs in low frequency. In this study, the function of the repressor of cellulase expression I (ACEI) was verified in Trichoderma koningii (T. koningii) YC01 through RNAi, and ace1-silenced strains with improved cellulase productivity were obtained. An expression cassette that transcribed the interfering double-stranded RNA (dsRNA) of ace1 was constructed and transformed into T. koningii, and the transformants, in which the expression of ace1 was successfully silenced, were selected. As a result of the ace1 gene silencing, the expression levels of the main cellulase and xylanase genes were elevated, and the enhanced production of total proteins, cellulase, and xylanase was observed in the cultivation. In addition, the down-regulation of ace1 resulted in an increasing expression of xyr1, but no clear variation in the expression of cre1, which suggested that ACEI acted as a repressor of the xyr1 transcription, but was not involved in the regulation of the cre1 expression. The results of this work indicate that ace1 is a valid target gene for enhancing enzyme production in T. koningii, and RNAi is an appropriate tool for improving the properties of industrial fungi.

Keywords

References

  1. Akel, E., B. Metz, B. Seiboth, and C. P. Kubicek. 2009. Molecular regulation of arabinan and L-arabinose metabolism in Hypocrea jecorina (Trichoderma reesei). Eukaryot. Cell 8: 1837-1844. https://doi.org/10.1128/EC.00162-09
  2. Aro, N., M. Ilmen, A. Saloheimo, and M. Penttila. 2003. ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl. Environ. Microbiol. 69: 56-65. https://doi.org/10.1128/AEM.69.1.56-65.2003
  3. Aro, N., T. Pakula, and M. Penttila. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739. https://doi.org/10.1016/j.femsre.2004.11.006
  4. Aro, N., A. Saloheimo, M. Ilmen, and M. Penttila. 2001. ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J. Biol. Chem. 276: 24309-24314. https://doi.org/10.1074/jbc.M003624200
  5. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  6. Belinky, P. A., A. Matityahu, Y. Hadar, and C. G. Dosoretz. 2008. Gene silencing by RNA interference in the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 74: 5359-5365. https://doi.org/10.1128/AEM.02433-07
  7. Deshpande, M. V., K. E. Eriksson, and L. G. Pettersson. 1984. An assay for selective determination of exo-1, 4,-beta-glucanases in a mixture of cellulolytic enzymes. Anal. Biochem. 138: 481-487. https://doi.org/10.1016/0003-2697(84)90843-1
  8. Fire, A., S. Xu, M. Montgomery, S. Kostas, S. Driver, and C. Mello. 1998. Potent and specific genetic interference by doublestranded RNA in Caenorhabditis elegans. Nature 391: 806-811. https://doi.org/10.1038/35888
  9. Fitzgerald, A., J. A. L. van Kan, and K. M. Plummer. 2004. Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet. Biol. 41: 963-971. https://doi.org/10.1016/j.fgb.2004.06.006
  10. Ghose, T. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268. https://doi.org/10.1351/pac198759020257
  11. Ilmen, M., A. Saloheimo, M. L. Onnela, and M. E. Penttila. 1997. Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Appl. Environ. Microbiol. 63: 1298-1306.
  12. Jiang, X., A. Geng, N. He, and Q. Li. 2011. New isolate of Trichoderma viride strain for enhanced cellulolytic enzyme complex production. J. Biosci. Bioeng. 111: 121-127. https://doi.org/10.1016/j.jbiosc.2010.09.004
  13. Kadotani, N., H. Nakayashiki, Y. Tosa, and S. Mayama. 2003. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol. Plant Microbe Interact. 16: 769-776. https://doi.org/10.1094/MPMI.2003.16.9.769
  14. Khalaj, V., H. Eslami, M. Azizi, N. Rovira-Graells, and M. Bromley. 2007. Efficient downregulation of alb1 gene using an AMA1-based episomal expression of RNAi construct in Aspergillus fumigatus. FEMS Microbiol. Lett. 270: 250-254. https://doi.org/10.1111/j.1574-6968.2007.00680.x
  15. Liu, H., T. R. Cottrell, L. M. Pierini, W. E. Goldman, and T. L. Doering. 2002. RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics 160: 463-470.
  16. Luo, K. Q. and D. C. Chang. 2004. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region. Biochem. Biophys. Res. Commun. 318: 303-310. https://doi.org/10.1016/j.bbrc.2004.04.027
  17. Mach-Aigner, A. R., M. E. Pucher, M. G. Steiger, G. E. Bauer, S. J. Preis, and R. L. Mach. 2008. Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl. Environ. Microbiol. 74: 6554-6562. https://doi.org/10.1128/AEM.01143-08
  18. Mach, R. and S. Zeilinger. 2003. Regulation of gene expression in industrial fungi: Trichoderma. Appl. Microbiol. Biotechnol. 60: 515-522.
  19. Mandels, M. and J. Weber. 1969. The production of cellulases. Adv. Chem. 95: 391-414.
  20. Mouyna, I., C. Henry, T. L. Doering, and J. P. Latge. 2004. Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol. Lett. 237: 317-324.
  21. Nakari-Setala, T., M. Paloheimo, J. Kallio, J. Vehmaanpera, M. Penttila, and M. Saloheimo. 2009. Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl. Environ. Microbiol. 75: 4853-4860. https://doi.org/10.1128/AEM.00282-09
  22. Nakayashiki, H. and Q. B. Nguyen. 2008. RNA interference: Roles in fungal biology. Curr. Opin. Microbiol. 11: 494-502. https://doi.org/10.1016/j.mib.2008.10.001
  23. Namekawa, S. H., K. Iwabata, H. Sugawara, F. N. Hamada, A. Koshiyama, H. Chiku, et al. 2005. Knockdown of LIM15/DMC1 in the mushroom Coprinus cinereus by double-stranded RNA-mediated gene silencing. Microbiology 151: 3669-3678. https://doi.org/10.1099/mic.0.28209-0
  24. Nguyen, Q. B., N. Kadotani, S. Kasahara, Y. Tosa, S. Mayama, and H. Nakayashiki. 2008. Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNAsilencing system. Mol. Microbiol. 68: 1348-1365. https://doi.org/10.1111/j.1365-2958.2008.06242.x
  25. Nidetzky, B., W. Steiner, M. Hayn, and M. Claeyssens. 1994. Cellulose hydrolysis by the cellulases from Trichoderma reesei: A new model for synergistic interaction. Biochem. J. 298 (Pt 3): 705-710.
  26. Penttila, M., H. Nevalainen, M. Ratto, E. Salminen, and J. Knowles. 1987. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene 61: 155-164. https://doi.org/10.1016/0378-1119(87)90110-7
  27. Qin, L.-N., F.-R. Cai, X.-R. Dong, Z.-B. Huang, Y. Tao, J.-Z. Huang, and Z.-Y. Dong. 2012. Improved production of heterologous lipase in Trichoderma reesei by RNAi mediated gene silencing of an endogenic highly expressed gene. Bioresour. Technol. 109: 116-122.
  28. Rauscher, R., E. Wurleitner, C. Wacenovsky, N. Aro, A. R. Stricker, S. Zeilinger, et al. 2006. Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot. Cell 5: 447-456. https://doi.org/10.1128/EC.5.3.447-456.2006
  29. Saloheimo, A., N. Aro, M. Ilmen, and M. Penttila. 2000. Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J. Biol. Chem. 275: 5817-5825. https://doi.org/10.1074/jbc.275.8.5817
  30. Schmoll, M. and C. P. Kubicek. 2003. Regulation of Trichoderma cellulase formation: Lessons in molecular biology from an industrial fungus. A review. Acta Microbiol. Immunol. Hung. 50: 125-145. https://doi.org/10.1556/AMicr.50.2003.2-3.3
  31. Seiboth, B., L. Hartl, M. Pail, E. Fekete, L. Karaffa, and C. P. Kubicek. 2004. The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on D-galactose. Mol. Microbiol. 51: 1015-1025. https://doi.org/10.1046/j.1365-2958.2003.03901.x
  32. Steiger, M. G., R. L. Mach, and A. R. Mach-Aigner. 2010. An accurate normalization strategy for RT-qPCR in Hypocrea jecorina (Trichoderma reesei). J. Biotechnol. 145: 30-37. https://doi.org/10.1016/j.jbiotec.2009.10.012
  33. Strauss, J., R. L. Mach, S. Zeilinger, G. Hartler, G. Stoffler, M. Wolschek, and C. P. Kubicek. 1995. Cre1, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett. 376: 103-107. https://doi.org/10.1016/0014-5793(95)01255-5
  34. Stricker, A. R., K. Grosstessner-Hain, E. Wurleitner, and R. L. Mach. 2006. Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot. Cell 5: 2128-2137. https://doi.org/10.1128/EC.00211-06
  35. Stricker, A. R., R. L. Mach, and L. H. de Graaff. 2008. Regulation of transcription of cellulases- and hemicellulasesencoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78: 211-220. https://doi.org/10.1007/s00253-007-1322-0
  36. Takeno, S., E. Sakuradani, A. Tomi, M. Inohara-Ochiai, H. Kawashima, T. Ashikari, and S. Shimizu. 2005. Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with delta12-desaturase gene expression. Appl. Environ. Microbiol. 71: 5124-5128. https://doi.org/10.1128/AEM.71.9.5124-5128.2005
  37. Whisson, S. C., A. O. Avrova, P. Van West, and J. T. Jones. 2005. A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol. Plant Pathol. 6: 153-163. https://doi.org/10.1111/j.1364-3703.2005.00272.x
  38. Zamore, P. D. and Y. Tomari. 2005. Perspective: Machines for RNAi. Gene Dev. 19: 517-529. https://doi.org/10.1101/gad.1284105

Cited by

  1. Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose vol.13, pp.None, 2013, https://doi.org/10.1186/1472-6750-13-42
  2. Enhancing cellulase production in Trichoderma reesei RUT C30 through combined manipulation of activating and repressing genes vol.40, pp.6, 2012, https://doi.org/10.1007/s10295-013-1253-y
  3. Factors involved in the response to change of agitation rate during cellulase production from Penicillium decumbens JUA10-1 vol.40, pp.9, 2012, https://doi.org/10.1007/s10295-013-1305-3
  4. Genome organization and assessment of high copy number and increased expression of pectinolytic genes from Penicillium griseoroseum: a potential heterologous system for protein production vol.41, pp.10, 2012, https://doi.org/10.1007/s10295-014-1486-4
  5. Enhancing Cellulase Production in Thermophilic Fungus Myceliophthora thermophila ATCC42464 by RNA Interference of cre1 Gene Expression vol.25, pp.7, 2012, https://doi.org/10.4014/jmb.1501.01049
  6. Genetics, Molecular, and Proteomics Advances in Filamentous Fungi vol.74, pp.10, 2012, https://doi.org/10.1007/s00284-017-1308-9
  7. Regulators of plant biomass degradation in ascomycetous fungi vol.10, pp.None, 2012, https://doi.org/10.1186/s13068-017-0841-x