DOI QR코드

DOI QR Code

Characterization of the Four GH12 Endoxylanases from the Plant Pathogen Fusarium graminearum

  • Habrylo, Olivier (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg) ;
  • Song, Xinghan (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg) ;
  • Forster, Anne (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg) ;
  • Jeltsch, Jean-Marc (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg) ;
  • Phalip, Vincent (Laboratoire d'Ingenierie des Polymeres pour les Hautes Technologies, Universite de Strasbourg)
  • Received : 2011.12.22
  • Accepted : 2012.03.11
  • Published : 2012.08.28

Abstract

Four putative GH12 genes were found in the Fusarium graminearum genome. The corresponding proteins were expressed in Escherichia coli, purified, and evaluated. FGSG_05851 and FGSG_11037 displayed high activities towards xyloglucan ($V_{max}$ of 4 and $11{\mu}mol/min$, respectively), whereas FGSG_07892 and FGSG_16349 were much less active with this substrate (0.081 and $0.004{\mu}mol/min$, respectively). However, all four of these enzymes had a similar binding affinity for xyloglucan. Xyloglucan was the substrate preferred by FGSG_05851, in contrast to the three other enzymes, which preferred ${\beta}$-glucan or lichenan. Therefore, FGSG_05851 is a xyloglucan-specific glucanase (E.C. 3.2.1.151) rather than an endoglucanase (E.C. 3.2.1.4) with broad substrate specificity. FGSG_11037 displayed a peculiar behavior in that the xyloglucan binding was highly cooperative, with a Hill coefficient of 2.5. Finally, FGSG_05851 essentially degraded xyloglucan into hepta-, octa-, and nonasaccharides, whereas the three other enzymes yielded hepta- and octa-saccharides as well as larger molecules.

Keywords

References

  1. Bauer, W. D., K. W. Talmadge, K. Keegstra, and P. Albersheim. 1973. The structure of plant cell walls: II. The hemicellulose of the walls of suspension-cultured sycamore cells. Plant Physiol. 51: 174-187. https://doi.org/10.1104/pp.51.1.174
  2. Boukari, I., M. O'Donohue, C. Remond, and B. Chabbert. 2011. Probing a family GH11 endo-${\beta}$-1,4-xylanase inhibition mechanism by phenolic compounds: Role of functional phenolic groups. J. Mol. Catal. B Enzym. 72: 130-138. https://doi.org/10.1016/j.molcatb.2011.05.010
  3. Bukhtoyarov, F. E., B. B. Ustinov, T. N. Salanovich, A. I. Antonov, A. V. Gusakov, O. N. Okunev, and A. P. Sinitsyn. 2004. Cellulase complex of the fungus Chrysosporium lucknowense: Isolation and characterization of endoglucanases and cellobiohydrolases. Biokhimiya 69: 666-677.
  4. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009 The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238. https://doi.org/10.1093/nar/gkn663
  5. Carapito, R., D. Hatsch, S. Vorwerk, E. Petkovski, J.-M. Jeltsch, and V. Phalip. 2008. Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genet. Biol. 45: 738-748. https://doi.org/10.1016/j.fgb.2007.12.002
  6. Carapito, R., C. Carapito, J.-M. Jeltsch, and V. Phalip. 2009. Efficient hydrolysis of hemicellulose by a Fusarium graminearum xylanase blend produced at high levels in Escherichia coli. Bioresour. Technol. 100: 845-850. https://doi.org/10.1016/j.biortech.2008.07.006
  7. Gloster, T. M., F. M. Ibatullin, K. Macauley, J. M. Eklof, S. Roberts, J. P. Turkenburg, et al. 2007. Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12. J. Biol. Chem. 282: 19177-19189. https://doi.org/10.1074/jbc.M700224200
  8. Goedegebuur, F., T. Fowler, J. Phillips, P. van der Kley, P. van Solingen, L. Dankmeyer, and S. D. Power. 2002. Cloning and relational analysis of 15 novel fungal endoglucanases from family 12 glycosyl hydrolase. Curr. Genet. 41: 89-98. https://doi.org/10.1007/s00294-002-0290-2
  9. Grishutin, S. G., A. V. Gusakov, A. V. Markov, B. B. Ustinov, M. V. Semenova, and A. P. Sinitsyn. 2004. Specific xyloglucanases as a new class of polysaccharide-degrading enzymes. Biochim. Biophys. Acta 1674: 268-281. https://doi.org/10.1016/j.bbagen.2004.07.001
  10. Grover, A. K., D. D. MacMurchie, and R. J. Cushley. 1977. Studies on almond emulsin ${\beta}D$-glucosidase I. Isolation and characterization of a bifunctional isozyme. Biochim. Biophys. Acta 482: 98-108. https://doi.org/10.1016/0005-2744(77)90358-8
  11. Hasper, A. A., E. Dekkers, M. Van Mil, P. J. I. Van de Vondervoort, and L. H. De Graaff. 2002. EglC, a new endoglucanase from Aspergillus niger with major activity towards xyloglucan. Appl. Environ. Microbiol. 68: 1556-1560. https://doi.org/10.1128/AEM.68.4.1556-1560.2002
  12. Hatsch, D., V. Phalip, and J.-M. Jeltsch. 2004. Use of genes encoding cellobiohydrolase-C and topoisomerase II as targets for phylogenetic analysis and identification of Fusarium. Res. Microbiol. 155: 290-296. https://doi.org/10.1016/j.resmic.2004.01.002
  13. Hayashi, T. 1989. Xyloglucans in the primary-cell wall. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 139-168. https://doi.org/10.1146/annurev.pp.40.060189.001035
  14. Ishida, T., K. Yaoi, A. Hiyoshi, K. Igarashi, and M. Samejima. 2007. Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J. 274: 5727-5736. https://doi.org/10.1111/j.1742-4658.2007.06092.x
  15. Lipchock, J. M. and J. P. Loria. 2010. Nanometer propagation of millisecond motions in V-type allostery. Structure 18: 1596-1607. https://doi.org/10.1016/j.str.2010.09.020
  16. Master, E. R., Y. Zheng, R. Storms, A. Tsang, and J. Powlowski. 2008. A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: Recombinant expression, purification and characterization. Biochem. J. 411: 161-170. https://doi.org/10.1042/BJ20070819
  17. Mitchell, D. B., K. Weimann, B. J. Vogel, L. Pasamontes, and A. P. G. M. van Loon. 1997. The phytase subfamily of histidine acid phosphatases: Isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology 143: 245-252. https://doi.org/10.1099/00221287-143-1-245
  18. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  19. Phalip, V., F. Delalande, C. Carapito, F. Goubet, D. Hatsch, E. Leize-Wagner, et al. 2005. Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr. Genet. 48: 366-379. https://doi.org/10.1007/s00294-005-0040-3
  20. Phalip, V., F. Goubet, R. Carapito, and J.-M. Jeltsch. 2009. Plant cell wall degradation with a powerful Fusarium graminearum enzymatic arsenal. J. Microbiol. Biotechnol. 19: 573-581.
  21. Powlowski, J., S. Mahajan, M. Schapira, and E. R. Master. 2009. Substrate recognition and hydrolysis by a fungal xyloglucanspecific family 12 hydrolase. Carbohyd Res. 344: 1175-1179. https://doi.org/10.1016/j.carres.2009.04.020
  22. Sandgren, M., J. Stahlberg, and C. Mitchinson. 2005. Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes. Prog. Biophys. Mol. Biol. 89: 246-291. https://doi.org/10.1016/j.pbiomolbio.2004.11.002
  23. Vlasenko, E., M. Schulein, J. Cherry, and F. Xu. 2010. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol. 101: 2405-2411. https://doi.org/10.1016/j.biortech.2009.11.057

Cited by

  1. Characterization of two novel family 12 xyloglucanases from the thermophilic Rhizomucor miehei vol.97, pp.23, 2012, https://doi.org/10.1007/s00253-013-4770-8
  2. Purification, characterization and function analysis of an extracellular β-glucosidase from elongating stipe cell walls inCoprinopsis cinerea vol.363, pp.9, 2012, https://doi.org/10.1093/femsle/fnw078
  3. Molecular and biochemical characterization of recombinant cel12B, cel8C, and peh28 overexpressed in Escherichia coli and their potential in biofuel production vol.10, pp.None, 2012, https://doi.org/10.1186/s13068-017-0732-1
  4. Novel multidomain, multifunctional glycoside hydrolases from highly lignocellulolytic Caldicellulosiruptor species vol.64, pp.12, 2012, https://doi.org/10.1002/aic.16354