DOI QR코드

DOI QR Code

Investigations on Possible Roles of C-Terminal Propeptide of a Ca-Independent ${\alpha}$-Amylase from Bacillus

  • Salimi, Ali (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University) ;
  • Yousefi, Fatemeh (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University) ;
  • Ghollasi, Marzieh (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University) ;
  • Daneshjou, Sara (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University) ;
  • Tavoli, Hesam (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University) ;
  • Ghobadi, Sirous (Department of Biology, Faculty of Science, Razi University of Kermanshah) ;
  • Khajeh, Khosro (Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University)
  • Received : 2011.12.07
  • Accepted : 2012.04.06
  • Published : 2012.08.28

Abstract

Previously, an extracellular ${\alpha}$-amylase (BKA) had been purified from the culture of Bacillus sp. KR8104. Subsequently, the crystal structure of the active enzyme revealed a 422 amino acids polypeptide. In this study, the bka was cloned into E. coli, which encoded a polypeptide of 659 amino acids including two additional fragments: one 44 residues N-terminal fragment and another 193 residues C-terminal fragment. In order to investigate the role of the C-terminal fragment, two constructs with and without this region [$BKA{\Delta}$(N44) and $BKA{\Delta}$(N44C193)] were designed and expressed in E. coli BL21. The optimum pH, thermal stability, and the end-products of starch hydrolysis were found to be similar in both constructs. The $K_m$ and $V_{max}$ values for $BKA{\Delta}$(N44) were lower than $BKA{\Delta}$(N44C193), using either starch or ethylidene-blocked 4-nitrophenylmaltoheptaoside as a substrate.

Keywords

References

  1. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  2. Bron, S., A. Bolhuis, H. Tjalsma, S. Holsappel, G. Venema, and J. M. van Dijl. 1998. Protein secretion and possible roles for multiple signal peptidases for precursor processing in Bacilli. J. Biotechnol. 64: 3-13. https://doi.org/10.1016/S0168-1656(98)00099-6
  3. Chen, X., P. Guo, Z. Xie, and P. Shen. 2001. A convenient and rapid method for genetic transformation of E. coli with plasmids. Antonie Van. Leeuwenhoek 80: 297-300. https://doi.org/10.1023/A:1013040812987
  4. Emori, M., M. Takagi, B. Maruo, and K. Yano. 1990. Molecular cloning, nucleotide sequencing, and expression of the Bacillus subtilis (natto) IAM1212 ${\alpha}$-amylase gene, which encodes an ${\alpha}$-amylase structurally similar to but enzymatically distinct from that of B. subtilis 2633. J. Bacteriol. 172: 4901-4908.
  5. Feller, G., S. D'Amico, A. M. Benotmane, F. Joly, J. Van Beeumen, and C. Gerday. 1998. Characterization of the Cterminal propeptide involved in bacterial wall spanning of ${\alpha}$-amylase from the psychrophile Alteromonas haloplanctis. J. Boil. Chem. 273: 12109-12115. https://doi.org/10.1074/jbc.273.20.12109
  6. Fu, L. L., Z. R. Xu, W. F. Li, J. B. Shuai, P. Lu, and C. X. Hu. 2007. Protein secretion pathways in Bacillus subtilis: Implication for optimization of heterologous protein secretion. Biotechnol. Adv. 25: 1-12.
  7. Fujimoto, Z., K. Takase, N. Doui, M. Momma, T. Matsumoto, and H. Mizuno. 1998. Crystal structure of a catalytic-site mutant ${\alpha}$-amylase from Bacillus subtilis complexed with maltopentaose. J. Mol. Biol. 277: 393-407. https://doi.org/10.1006/jmbi.1997.1599
  8. Harwood, C. R. and R. Cranenburgh. 2008. Bacillus protein secretion: An unfolding story. Trends Microbiol. 16: 73-79. https://doi.org/10.1016/j.tim.2007.12.001
  9. Hmidet, N., A. Bayoudh, J. Guy Berrin, S. Kanoun, N. Juge, and M. Nasri. 2008. Purification and biochemical characterization of a novel ${\alpha}$-amylase from Bacillus licheniformis NH1 cloning, nucleotide sequence and expression of amyN gene in Escherichia coli. J. Process Biochem. 43: 499-510. https://doi.org/10.1016/j.procbio.2008.01.017
  10. Kruse-Jarres, J. D., C. Kaiser, J. C. Hafkenscheid, W. Hohenwallner, W. Stein, J. Bohner, et al. 1989. Evaluation of a new ${\alpha}$-amylase assay using 4,6-ethylidene-(G7)-1-4-nitrophenyl-(G1)-${\alpha}$-D-maltoheptaoside as substrate. J. Clin. Chem. Clin. Biochem. 27: 103-113.
  11. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  12. Le Loir, Y., A. Gruss, S. D. Ehrlich, and P. Langella. 1998. A nine-residue synthetic propeptide enhances secretion efficiency of heterologous proteins in Lactococcus lactis. J. Bacteriol. 180: 1895-1903.
  13. Leveque, E., B. Haye, and A. Belarbi. 2000. Cloning and expression of an ${\alpha}$-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hydrothermalis and biochemical characterisation of the recombinant enzyme. FEMS Microbiol. Lett. 186: 67-71.
  14. Lin, L. L., W. H. Hsu, and W. S. Chu. 1997. A gene encoding for an ${\alpha}$-amylase from thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coli. J. Appl. Microbiol. 82: 325-334. https://doi.org/10.1046/j.1365-2672.1997.00364.x
  15. Malhotra, R., S. M. Noorwez, and T. Satyanarayana. 2000. Production and partial characterization of thermostable and calcium-independent ${\alpha}$-amylase of an extreme thermophile Bacillus thermooleovorans NP54. Lett. Appl. Microbiol. 31: 378-384. https://doi.org/10.1046/j.1472-765x.2000.00830.x
  16. Marco, J. L., L. A. Bataus, F. F. Valencia, C. J. Ulhoa, S. Astolfi-Filho, and C. R. Felix. 1996. Purification and characterization of a truncated Bacillus subtilis ${\alpha}$-amylase produced by Escherichia coli. Appl. Microbiol. Biotechnol. 44: 746-752.
  17. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. J. Anal. Chem. 31: 426-428. https://doi.org/10.1021/ac60147a030
  18. Nakada, T., M. Kubota, S. Sakai, and Y. Tsujisaka. 1990. Purification and characterization of two forms of maltotetraoseforming amylase from Pseudomonas stutzeri. J. Agric. Biol. Chem. 54: 737-743. https://doi.org/10.1271/bbb1961.54.737
  19. Nazmi, A. R., T. Reinisch, and H. Hinz. 2006. Ca-binding to Bacillus licheniformis ${\alpha}$-amylase (BLA). J. Arch. Biochem. Biophys. 453: 18-25. https://doi.org/10.1016/j.abb.2006.04.004
  20. Ohdan, K., T. Kuriki, H. Kaneko, J. Shimada, T. Takada, Z. Fujimoto, et al. 1999. Characteristics of two forms of ${\alpha}$-amylases and structural implication. Appl. Environ. Microbiol. 65: 4652-4658.
  21. Pohlner, J., R. Halter, K. Beyreuther, and T. F. Meyer. 1987. Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325: 458-462. https://doi.org/10.1038/325458a0
  22. Rodriguez Sanoja, R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus ${\alpha}$-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66: 3350-3356. https://doi.org/10.1128/AEM.66.8.3350-3356.2000
  23. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, New York.
  24. Sogaard, M., F. L. Olsen, and B. Svensson, 1991. C-Terminal processing of barley ${\alpha}$-amylase 1 in malt, aleurone protoplasts, and yeast. Proc. Natl. Acad. Sci. USA 88: 8140-8144. https://doi.org/10.1073/pnas.88.18.8140
  25. Takase, K., H. Mizuno, and K. Yamane, 1988. $NH_2$-terminal processing of Bacillus subtilis alpha-amylase. J. Biol. Chem. 263: 11548-11553.
  26. Vihinen, M., T. Peltonen, A. Iitia, I. Suominen, and P. Mantsala 1994. C-Terminal truncations of a thermostable Bacillus stearothermophilus ${\alpha}$-amylase. Protein Eng. 7: 1255-1259. https://doi.org/10.1093/protein/7.10.1255
  27. Yamane, K., Y. Hirata, T. Furusato, H. Yamazaki, and A. Nakayama. 1984. Changes in the properties and molecular weights of Bacillus subtilis M-type and N-type ${\alpha}$-amylases resulting from a spontaneous deletion. J. Biochem. 96: 1849-1858.

Cited by

  1. Thermal stability and activity improvements of a Ca-independent α-amylase fromBacillus subtilisCN7 by C-terminal truncation and hexahistidine-tag fusion : Truncation and Fusion Improve α-A vol.61, pp.2, 2014, https://doi.org/10.1002/bab.1150
  2. Effect of differential processing of the native and recombinant α-amylase from Bacillus amyloliquefaciens JJC33M on specificity and enzyme properties vol.7, pp.5, 2017, https://doi.org/10.1007/s13205-017-0954-8
  3. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization vol.17, pp.None, 2012, https://doi.org/10.1186/s12896-017-0343-8