DOI QR코드

DOI QR Code

An Optical-Density-Based Feedback Feeding Method for Ammonium Concentration Control in Spirulina platensis Cultivation

  • Bao, Yilu (Collage of Light Industry and Food Science, South China University of Technology) ;
  • Wen, Shumei (National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences) ;
  • Cong, Wei (National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences) ;
  • Wu, Xia (National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences) ;
  • Ning, Zhengxiang (Collage of Light Industry and Food Science, South China University of Technology)
  • Received : 2011.12.27
  • Accepted : 2012.02.29
  • Published : 2012.07.28

Abstract

Cultivation of Spirulina platensis using ammonium salts or wastewater containing ammonium as alternative nitrogen sources is considered as a commercial way to reduce the production cost. In this research, by analyzing the relationship between biomass production and ammonium-N consumption in the fed-batch culture of Spirulina platensis using ammonium bicarbonate as a nitrogen nutrient source, an online adaptive control strategy based on optical density (OD) measurements for controlling ammonium feeding was presented. The ammonium concentration was successfully controlled between the cell growth inhibitory and limiting concentrations using this OD-based feedback feeding method. As a result, the maximum biomass concentration (2.98 g/l), productivity (0.237 g/l d), nitrogen-to-cell conversion factor (7.32 gX/gN), and contents of protein (64.1%) and chlorophyll (13.4mg/g) obtained by using the OD-based feedback feeding method were higher than those using the constant and variable feeding methods. The OD-based feedback feeding method could be recognized as an applicable way to control ammonium feeding and a benefit for Spirulina platensis cultivations.

Keywords

References

  1. Anupama, R. 2000. Value-added food: Single cell protein. Biotechnol. Adv. 18: 459-479. https://doi.org/10.1016/S0734-9750(00)00045-8
  2. Belay, A. 1997. Mass culture of Spirulina (Arthrospira) outdoors - The Earthrise Farms Experience, pp. 131-158. In A. Vonshak (ed.). Spirulina platensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. Taylor and Francis, London.
  3. Belkin, S. and S. Boussiba. 1991. Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol. 32: 953-958.
  4. Bennett, A. and L. Bogorad. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58: 419-435. https://doi.org/10.1083/jcb.58.2.419
  5. Binaghi, L., A. Borghi, A. Lodi, A. Converti, and M. Borghi. 2003. Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem. 38: 1341-1346. https://doi.org/10.1016/S0032-9592(03)00003-7
  6. Bunbak, F., S. Cook, V. Zachleder, S. Hauser, and K. Kovar. 2011. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 91: 31-46. https://doi.org/10.1007/s00253-011-3311-6
  7. Carvalho, J. C. M., F. R. Francisco, K. A. Almeida, S. Sato, and A. Converti. 2004. Cultivation of Arthrospira (Spirulina) platensis (Canophyceae) by fed-batch addition of ammonium chloride at exponentially increasing feeding rates. J. Phycol. 40: 589-597. https://doi.org/10.1111/j.1529-8817.2004.03167.x
  8. Chaiklahan, R., N. Chirasuwan, W. Siangdung, K. Paithoonrangsarid and B. Bunnag. 2010. Cultivation of Spirulina platensis using pig wastewater in a semi-continuous process. J. Microbiol. Biotechnol. 20: 609-614. https://doi.org/10.4014/jmb.0907.07026
  9. Chamorro, G., M. Salazar, K. Araujo, C. Dos Santos, G. Ceballos, and L. F. Castillo. 2002. Update on the pharmacology of Spirulina (Arthrospira), an unconventional food. Arch. Latinoam. Nutr. 52: 232-240.
  10. Chen, F. and Y. Zhang. 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol. 20: 221-224. https://doi.org/10.1016/S0141-0229(96)00116-0
  11. Colla, L. M., C. Oliveira Reinehr, C. Reichert, and J. A. V. Costa. 2007. Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour. Technol. 98: 1489-1493. https://doi.org/10.1016/j.biortech.2005.09.030
  12. Converti, A., A. Lodi, A. Borghi, and C. Solisio. 2006. Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochem. Eng. J. 32: 13-18. https://doi.org/10.1016/j.bej.2006.08.013
  13. Cornet, J. F., C. G. Dussap, and J. B. Gros. 1998. Kinetics and energetics of photosynthetic micro-organisms in photobioreactors: Application to Spirulina growth. Adv. Biochem. Eng. Biotechnol. 59: 155-224.
  14. Costa, J. A. V., K. L. Cozza, L. Oliveira, and G. Magagnin. 2001. Different nitrogen sources and growth responses of Spirulina platensis in microenvironments. World J. Microbiol. Biotechnol. 17: 439-442.
  15. Danesi, E. D. G., C. O. Rangel-Yagui, J. C. M. Carvalho, and S. Sato. 2002. An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 23: 261-269. https://doi.org/10.1016/S0961-9534(02)00054-5
  16. Ferreira, L. S., M. S. Rodrigues, A. Converti, S. Sato, and J. C. M. Carvalho. A new approach to ammonium sulphate feeding for fed-batch Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor. Biotechnol. Prog. 26: 1271-1277. https://doi.org/10.1002/btpr.457
  17. Goksan, T., A. Zekeriyaoglu, and I. Ak. 2007. The growth of Spirulina platensis in different culture systems under greenhouse condition. Turkey J. Biol. 31: 47-52.
  18. Hibino, W., Y. Kadotani, M. Kominani, and T. Yamane. 1993. Three automated feeding strategies of natural complex nutrients utilizing on-line turbidity values in fed-batch culture: A case study on the cultivation of a marine microorganism. J. Ferment. Bioeng. 75: 443-450. https://doi.org/10.1016/0922-338X(93)90093-N
  19. Leduy, A. and N. Therien. 1977. An improved method for optical density measurement of the semimicroscopic blue green alga Spirulina maxima. Biotechnol. Bioeng. 19: 1219-1224. https://doi.org/10.1002/bit.260190812
  20. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  21. Moazami, N., R. Ranjbar, A. Ashori, M. Tangestani, and A. Sheykhi Nejad. 2011. Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass Bioenergy 35: 1935-1939. https://doi.org/10.1016/j.biombioe.2011.01.039
  22. Palmer, T., M. Ross, and S. G. Nutt. 2002. Measuring ammonia with online analyzers. Water Eng. Manag. 149: 34-39.
  23. Park, J., H. F. Jin, B. R. Lim, K. Y. Park, and K. Lee. 2010. Ammonia removal from anaerobic digestion effluent of livestock waste using green alga Scenedesmus sp. Bioresourc. Technol. 101: 8649-8657. https://doi.org/10.1016/j.biortech.2010.06.142
  24. Piorreck, M., K. H. Baasch, and P. Pohl. 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23: 207-216. https://doi.org/10.1016/S0031-9422(00)80304-0
  25. Qiang, H., Y. Zarmi, and A. Richmond. 1998. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur. J. Phycol. 33: 165-171. https://doi.org/10.1080/09670269810001736663
  26. Rodrigues, M. S., L. S. Ferreira, A. Converti, S. Sato, and J. C. M. Carvalho. 2010. Fed-batch cultivation of Arthrospira (Spirulina) platensis: Potassium nitrate and ammonium chloride as simultaneous nitrogen sources. Bioresourc. Technol. 101: 4491-4498. https://doi.org/10.1016/j.biortech.2010.01.054
  27. Sandnes, J. M., T. Ringstad, D. Wenner, P. H. Heyerdahl, T. Kallqvist, and H. R. Gislerod. 2006. Real-time monitoring and automatic density control of large-scale microalgae cultures using near infrared (NIR) optical density sensors. J. Biotechnol. 12: 209-215.
  28. Sassano, C., L. Gioielli, L. Ferreira, M. Rodrigues, S. Sato, A. Converti, and J. C. M. Carvalho. 2010. Evaluation of the composition of continuously-cultivated Arthrospira (Spirulina) platensis using ammonium chloride as nitrogen source. Biomass Bioenergy 34: 1732-1738. https://doi.org/10.1016/j.biombioe.2010.07.002
  29. Soletto, D., L. Binaghi, A. Lodi, J. C. M. Carvalho, and A. Converti. 2005. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources. Aquaculture 243: 217-224. https://doi.org/10.1016/j.aquaculture.2004.10.005
  30. Spolaore, P., C. Joannis-Cassan, E. Duran, and A. Isambert. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96. https://doi.org/10.1263/jbb.101.87
  31. Tam, N. F. Y. and Y. S. Wong. 1996. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresourc. Technol. 57: 45-50. https://doi.org/10.1016/0960-8524(96)00045-4
  32. Uslu, L., O. Isik, K. Koc, and T. Goksan. 2011. The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afr. J. Biotechnol. 10: 386-389.
  33. Xue, S. Z., Z. F. Su, and W. Cong. 2010. Growth of Spirulina platensis enhanced under intermittent illumination. J. Biotechnol. 151: 271-277.
  34. Yuan, X., A. Kumar, A. K. Sahu, and S. J. Ergas. 2011. Impact of ammonium concentration on Spirulina platensis growth in an airlift photobioreactor. Bioresourc. Technol. 102: 3234-3239. https://doi.org/10.1016/j.biortech.2010.11.019
  35. Zarrouk, C. 1966. Contribution a leitude dune cyanophyceie: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima. Ph. D. Thesis, University de Paris, Paris.

Cited by

  1. Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine vol.90, pp.4, 2015, https://doi.org/10.1002/jctb.4367