References
- Hodes, G. J. Phys. Chem. C 2008, 112, 17778. https://doi.org/10.1021/jp803310s
- Kamat, P. V.; Tvrdy, K.; Baker, D. R.; Radich, J. G. Chem. Rev. 2010, 110, 6664. https://doi.org/10.1021/cr100243p
- Hod, I.; Gonzalez-Pedro, V.; Tachan, Z.; Fabregat-Santiago, F.; Mora-Sero, I.; Bisquert, J.; Zaban, A. J. Phys. Chem. Lett. 2011, 2, 3032. https://doi.org/10.1021/jz201417f
- Yang, Z.; Chen, C.-Y.; Roy, P.; Chang, H.-T. Chem. Commun. 2011, 47, 9561. https://doi.org/10.1039/c1cc11317h
- Vogel, R.; Hoyer, P.; Weller, H. J. Phys. Chem. 1994, 98, 3183. https://doi.org/10.1021/j100063a022
- Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737. https://doi.org/10.1021/jp806791s
- Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467. https://doi.org/10.1021/nn900324q
- Ji, I. A.; Park, M.-J.; Jung, J.-Y.; Choi, M. J.; Lee, Y.-W.; Lee, J.- H.; Bang, J. H. Bull. Korean Chem. Soc. 2012, 33, 2200. https://doi.org/10.5012/bkcs.2012.33.7.2200
- Peter, L. Acc. Chem. Res. 2009, 42, 1839. https://doi.org/10.1021/ar900143m
- Mora-Seroì, I.; Bisquert, J. Nano Lett. 2003, 3, 945. https://doi.org/10.1021/nl0342390
- Tiwana, P.; Docampo, P.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. ACS Nano 2011, 5, 5158. https://doi.org/10.1021/nn201243y
- Snaith, H. J.; Ducati, C. Nano Lett. 2010, 10, 1259. https://doi.org/10.1021/nl903809r
- Leschkies, K. S.; Divakar, R.; Basu, J.; Enache-Pommer, E.; Boercker, J. E.; Carter, C. B.; Kortshagen, U. R.; Norris, D. J.; Aydil, E. S. Nano Lett. 2007, 7, 1793. https://doi.org/10.1021/nl070430o
- Hossain, M. A.; Jennings, J. R.; Koh, Z. Y.; Wang, Q. ACS Nano 2011, 5, 3172. https://doi.org/10.1021/nn200315b
- Mora-Seroì, I.; Bisquert, J. J. Phys. Chem. Lett. 2010, 1, 3046. https://doi.org/10.1021/jz100863b
- Fessenden, R. W.; Kamat, P. V. J. Phys. Chem. 1995, 99, 12902. https://doi.org/10.1021/j100034a032
- Katoh, R.; Furube, A.; Yoshihara, T.; Hara, K.; Fujihashi, G.; Takano, S.; Murata, S.; Arakawa, H.; Tachiya, M. J. Phys. Chem. B 2004, 108, 4818. https://doi.org/10.1021/jp031260g
- Nonoguchi, Y.; Nakashima, T.; Kawai, T. Small 2009, 5, 2403. https://doi.org/10.1002/smll.200900571
- Zhang, J.; Tang, C.; Bang, J. H. Electrochem. Commun. 2010, 12, 1124. https://doi.org/10.1016/j.elecom.2010.05.046
- Robel, I.; Subramanian, V.; Kuno, M.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. https://doi.org/10.1021/ja056494n
- Tvrdy, K.; Frantsuzov, P. A.; Kamat, P. V. Proc. Nat. Acad. Sci. U.S.A. 2011, 108, 29. https://doi.org/10.1073/pnas.1011972107
- Dibbell, R. S.; Youker, D. G.; Watson, D. F. J. Phys. Chem. C 2009, 113, 18643. https://doi.org/10.1021/jp9079469
- Asbury, J. B.; Hao, E.; Wang, Y.; Ghosh, H. N.; Lian, T. J. Phys. Chem. B 2001, 105, 4545. https://doi.org/10.1021/jp003485m
- Stockwell, D.; Yang, Y.; Huang, J.; Anfuso, C.; Huang, Z.; Lian, T. J. Phys. Chem. C 2010, 114, 6560. https://doi.org/10.1021/jp912133r
- Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2001, 105, 5585. https://doi.org/10.1021/jp004121x
- Green, A. N. M.; Palomares, E.; Haque, S. A.; Kroon, J. M.; Durrant, J. R. J. Phys. Chem. B 2005, 109, 12525. https://doi.org/10.1021/jp050145y
- Quintana, M.; Edvinsson, T.; Hagfeldt, A.; Boschloo, G. J. Phys. Chem. C 2006, 111, 1035.
- Bang, J. H.; Kamat, P. V. Adv. Funct. Mater. 2010, 20, 1970. https://doi.org/10.1002/adfm.200902234
- Liu, D.; Kamat, P. V. J. Phys. Chem. 1993, 97, 10769. https://doi.org/10.1021/j100143a041
- Martinez-Ferrero, E.; Mora-Seroì, I.; Albero, J.; Gimenez, S.; Bisquert, J.; Palomares, E. Phys. Chem. Chem. Phys. 2010, 12, 2819. https://doi.org/10.1039/b924970b
- Chakrapani, V.; Baker, D.; Kamat, P. V. J. Am. Chem. Soc. 2011, 133, 9607. https://doi.org/10.1021/ja203131b
- Bang, J. H.; Kamat, P. V. ACS Nano 2011, 5, 9421. https://doi.org/10.1021/nn204350w
- Guijarro, N. S.; Shen, Q.; Gimeìnez, S.; Mora-Seroì, I.; Bisquert, J.; Lana-Villarreal, T.; Toyoda, T.; Goìmez, R. J. Phys. Chem. C 2010, 114, 22352. https://doi.org/10.1021/jp108499h
- Mora-Seroì, I.; Gimeìnez, S.; Fabregat-Santiago, F.; Goìmez, R.; Shen, Q.; Toyoda, T.; Bisquert, J. Acc. Chem. Res. 2009, 42, 1848. https://doi.org/10.1021/ar900134d
- Zaban, A.; Greenshtein, M.; Bisquert, J. ChemPhysChem 2003, 4, 859. https://doi.org/10.1002/cphc.200200615
- Sudhagar, P.; Song, T.; Lee, D. H.; Mora-Seroì, I.; Bisquert, J.; Laudenslager, M.; Sigmund, W. M.; Park, W. I.; Paik, U.; Kang, Y. S. J. Phys. Chem. Lett. 2011, 2, 1984. https://doi.org/10.1021/jz200848v
Cited by
- Triple-Yolked ZnO/CdS Hollow Spheres for Semiconductor-Sensitized Solar Cells vol.31, pp.7, 2014, https://doi.org/10.1002/ppsc.201300365
- New Insight into Copper Sulfide Electrocatalysts for Quantum Dot-Sensitized Solar Cells: Composition-Dependent Electrocatalytic Activity and Stability vol.6, pp.24, 2014, https://doi.org/10.1021/am505473d
- Enhanced performance of PbS-sensitized solar cells via controlled successive ionic-layer adsorption and reaction vol.17, pp.15, 2015, https://doi.org/10.1039/C5CP00941C
- Revival of Solar Paint Concept: Air-Processable Solar Paints for the Fabrication of Quantum Dot-Sensitized Solar Cells vol.121, pp.33, 2017, https://doi.org/10.1021/acs.jpcc.7b05207
- Thiolated Gold Nanoclusters for Light Energy Conversion vol.3, pp.n, 2012, https://doi.org/10.1021/acsenergylett.8b00070
- Ag(I)-Thiolate-Protected Silver Nanoclusters for Solar Cells: Electrochemical and Spectroscopic Look into the Photoelectrode/Electrolyte Interface vol.11, pp.13, 2019, https://doi.org/10.1021/acsami.9b00049