DOI QR코드

DOI QR Code

IEEE802.16m을 위한 효율적인 상향링크 스케줄러 연구

A Novel Efficient Up-Link Scheduler for IEEE 802.16m

  • 조다영 (광운대학교 전자통신공학과 디지털 통신 연구실) ;
  • 오혁준 (광운대학교 전자통신공학과 디지털 통신 연구실) ;
  • 홍성웅 (광운대학교 전자통신공학과 디지털 통신 연구실) ;
  • 오일혁 (LIG넥스원 통신연구센터) ;
  • 고경수 (LIG넥스원 통신연구센터)
  • 투고 : 2012.08.21
  • 심사 : 2012.11.12
  • 발행 : 2012.11.30

초록

4세대 이동통신 시스템의 효율적인 서비스 지원을 위해서는 스케줄러를 이용한 자원 할당이 매우 중요하다. 많은 연구들을 통하여 다양한 스케줄러들이 제안 되었지만 기존의 방법들은 실시간 트래픽과 비 실시간 트래픽이 다양하게 공존하는 실제 동작 시나리오를 반영하기 보다는 특정 동작 시나리오에만 초점을 맞춰 실제 환경에서 실시간 서비스의 지연조건을 만족 시키지 못하거나, 전체 쓰루풋이 떨어지는 문제점이 있었다. 본 논문에서는 이러한 문제점을 극복하기 위하여 가상 시간과 가상 완료시간을 통하여 단말을 스케줄링하고, 긴급도를 이용하여 단말 내 버퍼를 스케줄링 하는 IEEE 802.16m 시스템용 효율적인 상향링크 스케줄링 기법을 제안한다. 시뮬레이션 결과, 제안된 스케줄러는 실시간 서비스의 지연 성능을 만족시키면서도 쓰루풋은 향상되는 성능을 보였다.

The design of an efficient scheduler is a key design factor in IEEE 802.16m systems, in order to support services with various QoS smoothly. Although conventional studies of schedules have been suggested, those had problems that are not able to satisfy the delay condition and make the through-put declined, because they only focused on a specific action scenario rather than reflecting practical action scenarios which have real-time and non-real-time traffics variously. In this paper, an efficient uplink scheduling algorithm is proposed for IEEE 802.16m system by introducing the concepts of Virtual Time(VT) and Virtual Finish Time(VFT) based priority determination, and separate buffers for each QoS class in the mobile terminal. Simulation results showed that the proposed scheme had satisfied the delay requirement of real-time services even with improved throughput performance compared to conventional methods.

키워드

참고문헌

  1. Kitti Wongthavarawat, Aura Ganz. "Packet scheduling for QoS support in IEEE 802.16 broadband wireless access systems" International journal of Communication systems(Int. J. Commun Syst) Feb. 2003.
  2. A. Sayenko, O. Alanen, J. Karhula, and T. Hamlainen, "Ensuring the QoS Requirements in 802.16 Scheduling," IEEE MSWiM '06, pp. 108- 117, Oct. 2006.
  3. C. Cicconetti, L. Lenzini, E. Mingozzi, and Carl Eklund, "Quality of Service Support in IEEE 802.16 Networks," IEEE Network, pp. 50-55, March/April 2006.
  4. T. Kwon, H. Lee, S. Choi, J. Kim, and D.-H. Cho, S. Cho, S. Yun, W.-H. Park, and K. Kim, "Design and Implementation of a Simulator Based on a Cross-Layer Protocol between MAC and PHY Layers in a WiBro Compatible IEEE 802.16e OFDMA System," IEEE Communications Magazine, pp. 136-146, Dec. 2005.
  5. IEEE P802.16m/D6, DRAFT Amendment to IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems.
  6. IEEE 802.16 Broadband Wireless Access Working Group, IEEE 802.16m Evaluation Methodology Document (EMD),January 2009.
  7. V. Erecg, et al., "Channel models for fixed wireless applications", IEEE 802.16.3c-01/29r4, July 2001.
  8. Recommendation ITU-R M.1225, "Guidelines for evaluation of radio transmission technologies for IMT-2000", May. 1997.
  9. 3GPP-3GPP2 Spatial Channel Ad-hoc Group, "Spatial Channel Model Text Description," V7.0, Aug. 2003.
  10. 3GPP TR 25.996, "Spatial channel model for Multiple Input Multiple Output(MIMO)Simulations", June 2007.
  11. G, Calcev,D. Chizhik, B. Goransson, S. Howard, H.Huang, A. Kogiantis, A.F.Molisch, A.L. Moustakas, D. Reed and H. Xu, "A Wideband Spatial Channel Model for System-Wide Simulations", IEEE Transactions Vehicular Technology, vol. 56, pp. 389-403, March 2007. https://doi.org/10.1109/TVT.2007.891463
  12. Daniel S. Baum et al, "An Interim Channel Model for Beyond-3G Systems Extending the 3GPP Spatial Channel Model (SCM)", Proceedings of the IEEE VTC, May 2005.
  13. H. Asplund, A.A. Glazunov, A.F. Molisch, K.I. Pedersen, and M. Steinbauer, "The COST259 directional channel II - macrocells," IEEE Transactions on wireless Communications, vol. 5, pp. 3434-3450, Dec. 2006. https://doi.org/10.1109/TWC.2006.256967
  14. A. F. Molisch and H. Hofstetter, "The COST273 Channel Model," in "Mobile Broadband Multimedia Networks",(L. Correia, ed.), Academic Press, May. 2006.
  15. M. Steinbauer, A. F. Molisch, and E. Bonek, "The double-directional radio channel," IEEE Antennas and Propagation magazine, pp. 51-63, Aug. 2001.
  16. IST-4-027756 WINNER II, D 5.10.2, "Spectrum requirements for systems beyond IMT-2000", March 2007.
  17. R. Sandanalakshmi, Shahid Mumtaz, and Kazi Saidul, Enhanced Algorithm for MIESM.
  18. Hong Soon Nam and Dae Young Kim "Credit-Based Round Robin for High Speed Networks" KICS Journal(J-KICS) vol. 27, no. 12C, pp. 1207-1214, Dec. 2002.