DOI QR코드

DOI QR Code

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan (College of Mathematics and Computer, Hebei University)
  • Received : 2012.08.04
  • Accepted : 2012.09.25
  • Published : 2012.11.30

Abstract

Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

Keywords

References

  1. T. H. Kim and H. K. Xu, Strong convergence of modified Mann iteration for asymptotically nonexpansive mappings and semigroups, Nonliear Anal. 64 (2006), 1140-1152. https://doi.org/10.1016/j.na.2005.05.059
  2. A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  3. R. T. Rockafellar, On the Maximality of Sums of Nonlinear Monotone Operators, Transactions of the American Mathematical Society 149 (1970), 75-88. https://doi.org/10.1090/S0002-9947-1970-0282272-5
  4. Y. Song and S. Xu, Strong convergence theorems for nonexpansive semigroup in Banach spaces, J. Math. Anal. Appl. 318 (2007), 43-52.
  5. T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl. 305 (2005), 227-239. https://doi.org/10.1016/j.jmaa.2004.11.017
  6. H. K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003), 659-678. https://doi.org/10.1023/A:1023073621589