사육밀도의 차이가 지렁이의 생육, 체조직으로의 유기물 전환효율 및 분립생산에 미치는 영향

The Effect of Different Stocking Rate on Growth, Cast production and Conversion Efficiency of Organic Matter to Tissues of Earthworm (Eisenia fetida L.)

  • 투고 : 2012.07.12
  • 심사 : 2012.08.20
  • 발행 : 2012.08.30

초록

사육밀도의 차이가 지렁이의 생육, 체조직으로의 유기물 전환효율 및 분립생산량에 미치는 영향을 조사한 결과를 요약하면 다음과 같다. 1. 공시 한우분의 탄질율은 25.1로, 지렁이 먹이로 적합한 탄질율로 추정되었다. 2. 지렁이 생체중과 먹이 량의 비율이 1:32였던 S-3에서 생체중 증가율과 체조직으로의 유기물 전환효율이 유의하게 높은 값을 나타내었는데, 이 비율을 사육공간으로 나타내면 $56.6cm^3$이었다. S-3에서 사육기간 평균 생체중 증가율과 체조직으로의 유기물 전환효율은 각각 10.63 mg/day와 6.65%를 나타내었다. 3. 지렁이 생체중과 먹이 량의 비율 1:8이었던 S-1에서 사육기간 중 분립비율이 가장 높았지만, 생체중 증가율과 체조직으로 유기물 전환효은 -값을 나타내었다. 이는 개체 간 먹이 경합이 심해진 결과로 추정된다. 4. 사육밀도가 높아짐에 따라 지렁이 분립의 pH, 전 질소함량, 유효인산함량, 양이온치환능력 (CEC) 및 양이온 함량이 유의하게 증가되었다. 특히 유효인산함량, 양이온치환능력 및 양이온함량은 사육기간이 길어짐에 따라 유의하게 증가되었다. 5. 지렁이 분립의 이화학적 특성으로 볼 때, 상토 재 또는 토양개량제로서 유용성이 높다고 판단되었다.

This experiment was carried out to investigate the effect of different stocking rate on growth, cast production and conversion efficiency of organic matter to tissues of earthworm. The carbon and nitrogen ratio (C/N) of tested Korean cow manure was 25.1, it was estimated an adequate ratio as feed for earthworms. The different stocking rates were 1:8(S-1), 1:16(S-2), 1:32(S-3) 1:64(S-4) 1:128(S-5) and 1:256 (S-6) as the ratios of earthworm fresh weight to biomass of Korean cow manure, respectively. A stocking rate of 1:32(S-3) was obtained a significantly highest values of increasing rate and conversion efficiency of organic matter to earthworm tissues. The mean values of increasin g rate of fresh weight and conversion efficiency of organic matter to earthworm tissues were 10.63 mg/day and 6.65% at the ratio of 1:32(S-3) with a rearing volume was $56.6cm^3$. A stocking rate of 1:8(S-1) was obtained a highest ratio of vermicasts, but showed a negative values of increasing rate and conversion efficiency of organic matter to earthworm tissues, it may due to severely food competition between individuals during the rearing periods. The pH, total nitrogen, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with stocking rate. Especially, available phosphorus, cation exchange capacity and exchangeable cations of vermicasts tended to increase with rearing progressed. Vermicasts have the potential for improving plant growth when amended to container medium and soil according to increased availability of nutrients and improved physicochemical properties.

키워드

참고문헌

  1. 고재경, 권영택, 이창호. 1995. 붉은 지렁이 (Lumbricus rubellus L.)와 줄 지렁이 (Helodrilus foetidus)를 이용한 유기성 슬러지 처리 효율성 비교. 한국유기성자원학회 봄철 학술대회 p. 102-109.
  2. 농경연, 2011. 농수산식품 주요통계자료.
  3. 이주삼, 정재춘, 조익환. 1992. 제지 sludge 와 우분의 혼합비율이 붉은 지렁이의 생육과 분립의 화학적 조성에 미치는 영향. 한국폐기물학회지 9(2):19-26.
  4. 이주삼. 김성진. 조고영. 1993. Vermicomposting에 의한 우분의 처리- 사육밀도가 지렁이의 생육과 증식에 미치는 영향. 한국유기성폐자원학회지 1(2):259-266.
  5. 이주삼. 1995. Vermicomposting에 의한 우분의 처리 -먹이의 탄질율과 사육밀도가 지렁이의 생육과 분립생산에 미치는 영향. 한국축산시설환경학회지 1(1):65-75.
  6. 이주삼. 이무춘. 1996. Vermicomposting에 의한 본뇨슬러지의 처리. 한국유기성폐자원학회지 4(2):35-45.
  7. 이주삼. 김만중. 김남천. 2005. Vermicomposting에 의한 음식물쓰레기의 처리. 한국유기성자원학회지 13(3):51-62.
  8. 이주삼. 감만중. 2006. Vermicomposting에 의한 돈분의 처리. - 음식물쓰레기와의 환합 처리-. 한국축산시설환경학회지 12 (2):75-84.
  9. 이지영. 이주삼. 2008. 먹이조건의 차이가 지렁이의 생육, 분립생산량 및 체조직으로 유기물 전환효율에 미치는 영향. 한국 유기농업학회지 16(3):287-298.
  10. 이주삼. 최덕천. 2009. 지렁이에 의한 돈분 퇴비화용 유기성 자원 연구, 한국축산시설환경회지 15(3):289-296.
  11. 岡田光正. 森忠一. 須藤降一. 1980. シマミミズによる汚泥處理の可能性に關する 硏究-ミミズ個體群の動態に關するシミユ-シヨンと汚泥處理のため最適條件の推定- 國立環境硏究所硏究報告 第14號 223-247.
  12. 渡邊弘之. 森忠洋. 平田俊道. 1979. ミミズの有效利用とその技術. サイエテイスト社
  13. Atiyeh, R. M., Subler, S., Edwards, C. A., Bachman, G., Metzger, J. D. and Shuster, W. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 44, 579-590. https://doi.org/10.1078/S0031-4056(04)70073-6
  14. Bolton, P. L.. and Phillipson, J. 1976. Burrowing, feeding, egestion and energy budgets of Allobophora rosea (Savigny) (Lumbricidae). Oecologia 23, 225-245. https://doi.org/10.1007/BF00361238
  15. Bouche, M. B. 1977. Strategies lombriciennes. In U. Lohm and T. Persson. (eds.) "Soil Organism as Components of Ecosystem" Bio. Bull 25, 122-132.
  16. Cantanazaro, C. J., Williams, K. A. and Sauve, R. J. 1998. Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum. J. of Plant Nutrition, 21, 1025- 1036. https://doi.org/10.1080/01904169809365461
  17. Chaoui, H. I., Zibilske, L. M. and Ohno T. 2003. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biol. Biochem. 35, 295-302. https://doi.org/10.1016/S0038-0717(02)00279-1
  18. Devliegher, W. and Vertraete, E. 1997. The effect of Lumbricus terrestris on soil in relation to plant growth: effect of nutrient-enrichment processes (NEP) and gut-associated processes (GAP). Soil Biol. Biochem. 29(3/4), 341-346. https://doi.org/10.1016/S0038-0717(96)00096-X
  19. Dietz, S. 1979. Etude de l'incoporation de la litiere en systeme herbace a l'aide de materiel vegetal marque au $^{14}C$. These de $3^{\circ}$ cycle ecol. terr. Univ. Sci. Tech. Languedoc, Monttpellier
  20. Domingues, J. and Edwards, C. A. 1997. Effect of stocking rate and moisture content on the growth and maturation of Eisenia andrei (Oligochaeta) in pig manure. Soil Biol. Biochem. 29, 743-746. https://doi.org/10.1016/S0038-0717(96)00276-3
  21. Edwards, C. A. 1988. Breakdown of animal, vegetable and industrial organic wastes by earthworm. In Earthworm in waste and environmental management. SPB Academic Publishing. The Hague, The Netherlands, pp. 21-31.
  22. Hartenstein, R. and Amico, L. 1983. Production and carrying capacity for the earthworm Lumbricus terrestris in culture. Soil Biol. Biochem. 15, 51-54. https://doi.org/10.1016/0038-0717(83)90118-9
  23. Lavelle, P., Sow, B. and Schaefer, R, 1980. The geophagous earthworms community in the Lamto savanna (Ivory Coast). Niche partitioning and utilization of soil nutritive resources. In D. L. Dindal (ed.). "Soil Biology as Related to Land Use Practices". pp. 653-672.
  24. Lee, K. E. 1983. The influence of earthworms and termites on soil nitrogen cycling. In "New Trends in Soil Biology" (Ph. Lebrun, H. M., Andre, A, de Medts,, C. Gregoire-Wibo and G. Wauthy, eds.), pp. 35-48. Proc. 8th Intl Colloquium Soil Zool., Louvain-la-Neuve, 1982. Dieu-Brichart, Ottignies-Louvain-la-Neuve.
  25. Loehr, R. C. 1985. Factors affecting the vermistabilization process. Water Res. 19 (10):1311-1317. https://doi.org/10.1016/0043-1354(85)90187-3
  26. MacArthur, R. H. and Wilson, E. O, 1967. Some generalized therms of natural selection. Proc. Natl. Acd. Sci., USA 48, 1893-1897.
  27. Neuhauser, E. F., Lohr, R. C. and Malecki, M. R. 1988. The potential of earthworms for managing sewage sludge. In Earthowrm and Waste Management. (eds.) by C. A. Edwards and E. F. Neuhauser., SPB Academic Publishing. The Netherlands. pp. 9-20.
  28. Tomati, U., Grapelli, A. and Galli, E. 1987. The presence of growth regulators in earthworm-worked wastes (In On Earthworms. A. M. Bonvicini Pagliai & P. Omodeo eds.). Selected Symposia and Monographs U.Z.I., 2, Mucchi, Modena pp. 423-435.
  29. Vinceslas-Akpa, M. and Loquet, M., 1997. Organic matter transformations in lignocellulosic waste products composted or vermicomposted (Eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol. Biocem. 29, 751- 758. https://doi.org/10.1016/S0038-0717(96)00201-5