Abstract
In recent years, great attention has been paid to using simple physical objects as tangible objects to improve user interaction in augmented reality (AR) environments. In this paper, we address AR-based user interaction using tangible objects, which has been used as a key component for virtual design evaluation of engineered products including digital handheld products. We herein consider the use of two types (product-type and pointer-type) of tangible objects. The user creates input events by touching specified parts of the product-type object with the pointer-type object, and the virtual product reacts to the events by rendering its visual and auditory contents on the output devices. The product-type object is used to reflect the geometric shape of a product of interest and to determine its position and orientation in the AR environment. The pointer-type object is used to recognize the reference position of the pointer (or finger) in the same environment. The rapid prototype of the product is employed as a good alternative to the product-type object, but various alternatives to the pointer-type object can be considered according to fabrication process and touching mechanism. In this paper, we present four alternatives to the pointer-type object and investigate their strong and weak points by performing experimental comparison of their various aspects including interaction accuracy, task performance, and qualitative user experience.