DOI QR코드

DOI QR Code

Influence of Current Density on Corrosion Properties of AZ91 Mg Alloy Coated by Plasma Electrolytic Oxidation Method

인가전류밀도에 따른 플라즈마 전해산화코팅된 AZ91 마그네슘 합금의 내식성 변화

  • Lee, Byung Uk (Department of Metallurgy and Materials Engineering, Hanyang University) ;
  • Hwang, In Jun (Department of Metallurgy and Materials Engineering, Hanyang University) ;
  • Lee, Jae Sik (School of Materials Science and Engineering, Yeungnam University) ;
  • Ko, Young Gun (School of Materials Science and Engineering, Yeungnam University) ;
  • Shin, Dong Hyuk (Department of Metallurgy and Materials Engineering, Hanyang University)
  • 이병욱 (한양대학교 금속재료공학과) ;
  • 황인준 (한양대학교 금속재료공학과) ;
  • 이재식 (영남대학교 신소재공학부) ;
  • 고영건 (영남대학교 신소재공학부) ;
  • 신동혁 (한양대학교 금속재료공학과)
  • Received : 2011.04.18
  • Published : 2011.08.25

Abstract

The study investigated the influence of current density on the corrosion-protection properties of an AZ91 Mg alloy subjected to plasma electrolytic oxidation coating. The present coatings were carried out under an AC condition at three different current densities, i.e., 100, 150, and $200mA/cm^2$. From microstructural observations, the micro cracks connecting each micro pore were pronounced on the oxide surface of the samples coated at current densities higher than $150mA/cm^2$ since increasing the current density in this study led to an increment in the relative volume fraction of the MgO compound. Based on potentio dynamic polarization and immersion tests, the sample coated at a current density of $100mA/cm^2$ showed superior corrosion resistance.

Keywords

Acknowledgement

Supported by : 교육과학기술부, 지식경제부

References

  1. A. L. Rudd, C. B. Breslin, and F. Mansfeld, Corros. Sci. 42, 275 (2000). https://doi.org/10.1016/S0010-938X(99)00076-1
  2. J. E. Gray and B. Luan, J. Alloys Compd. 336, 88 (2002). https://doi.org/10.1016/S0925-8388(01)01899-0
  3. G. Song, A. Atrens, and M. Dargusch, Corros. Sci. 41, 249 (1999).
  4. S. Namgung, Y. G. Ko, K. R. Shin, and D. H. Shin, Kor. J. Met. Mater. 48, 813 (2010).
  5. S. Y. Chang, D. H. Lee, B. S. Kim, T. S. Kim, Y. S. Song, S. H. Kim, and C. B. Lee, Met. Mater. Int. 15, 759 (2009). https://doi.org/10.1007/s12540-009-0759-8
  6. Y. M. Kim, D. Y. Hwang, C. W. Lee, B. Yoo, and D. H. Shin, Kor. J. Met. Mater. 48, 49 (2010). https://doi.org/10.3365/KJMM.2010.48.01.049
  7. A. L. Yerokhin, X. Nie, A. Leyand, A. Mattews, and S. J. Dowey, Surf. Coat. Technol. 122, 73 (1999). https://doi.org/10.1016/S0257-8972(99)00441-7
  8. Q. Cai, L. Wang, B. Wei, and Q. Liu, Surf. Coat. Technol. 200, 3727 (2006). https://doi.org/10.1016/j.surfcoat.2005.05.039
  9. Y. G. Ko, K. M. Lee, K. R. Shin, and D. H. Shin, Kor. J. Met. Mater. 48, 724 (2010).
  10. A. L. Yerokin, V. V. Lyubimov, and R. V. Ashitkov, Ceram. Int. 122, 1 (1999).
  11. Y. G. Ko, S. Namgung, and D. H. Shin, Surf. Coat. Technol. 205, 2525 (2010). https://doi.org/10.1016/j.surfcoat.2010.09.055
  12. H. P. Duan, C. W. Yan, and F. H. Wang, Electrochim. Acta 52, 3785 (2007). https://doi.org/10.1016/j.electacta.2006.10.066
  13. D.Y. Haxing, Y. G. Ko, Y. H. Kim, B. Yoo, and D. H. Shin, Mater. Tras. 41, 408 (2010).
  14. P. Su, X. Wu, Y. Guo, and Z. Jiang, J. Alloys. Compd. 475, 773 (2009). https://doi.org/10.1016/j.jallcom.2008.08.030
  15. L. R. Chang, F. H. Cao, J. S. Cai, W. J. Liu, Z. Zhang, and J. Q. Zhang, Trans. Nonferrous Met. Soc. China 21, 307 (2011). https://doi.org/10.1016/S1003-6326(11)60714-0
  16. Y. Yang and H. Wu, Trans. Nonferrous Met. Soc. China 20, s688 (2010).
  17. P. B. Srinivasan, J. Liang, C. Blawert, M. Strmer, and W. Dietzel, Appl. Surf. Sci. 255, 4212 (2009). https://doi.org/10.1016/j.apsusc.2008.11.008
  18. H. Y. Hsiao, P. Chung, and W. T. Tsai, Corros. Sci. 49, 781 (2007). https://doi.org/10.1016/j.corsci.2006.05.045
  19. Q. Cai, L. Wang, B. Wei, and Q. Liu, Surf. Coat. Technol. 200, 3727 (2006). https://doi.org/10.1016/j.surfcoat.2005.05.039
  20. E. Matykina, A. Berkani, P. Skeldon, and G. E. Thompson, Electrochim. Acta 53, 1987 (2007). https://doi.org/10.1016/j.electacta.2007.08.074
  21. R. O. Hussein, D. O. Northwood, and X. Nie, J. Vac. Sci. Technol. 28, 766 (2010). https://doi.org/10.1116/1.3429583
  22. R. H. U. Khan, A. L. Yerokhin, T. Pilkington, A. Leyland, and A. Matthews, Surf. Coat. Technol. 200, 1580 (2005). https://doi.org/10.1016/j.surfcoat.2005.08.092
  23. H. Duan, A. Yan, and F. Wang, Electrochim. Acta 52, 5002 (2007). https://doi.org/10.1016/j.electacta.2007.02.021
  24. Y. Ma , X. Nie, D. O. Northwood, and H. Hu, Thin Solid Films 494, 296 (2006). https://doi.org/10.1016/j.tsf.2005.08.156
  25. M. Stern and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957). https://doi.org/10.1149/1.2428496
  26. Y. W. Song, D. Y. Shan, and E. H. Han, Mater. Corros. 58, 506 (2007). https://doi.org/10.1002/maco.200604033