DOI QR코드

DOI QR Code

Analysis of Trading Performance on Intelligent Trading System for Directional Trading

방향성매매를 위한 지능형 매매시스템의 투자성과분석

  • Choi, Heung-Sik (The School of Management Information Systems, Kookmin University) ;
  • Kim, Sun-Woong (The Graduate School of Business Information Technology, Kookmin University) ;
  • Park, Sung-Cheol (The Graduate School of Business Information Technology, Kookmin University)
  • 최흥식 (국민대학교 경영정보학부) ;
  • 김선웅 (국민대학교 BIT전문대학원) ;
  • 박성철 (국민대학교 BIT전문대학원)
  • Received : 2010.07.17
  • Accepted : 2011.08.03
  • Published : 2011.09.30

Abstract

KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

방향성(Direction)과 변동성(Volatility)에 대한 분석은 증권투자를 위한 시장분석의 기초가 된다. 변동성분석이 옵션 투자에서 중요하다면 주식이나 주가지수선물투자는 방향성분석에 의하여 투자성과가 결정된다. 기존의 금융분석에서 기계학습을 이용한 방향성에 대한 연구는 주가나 투자위험의 예측을 중심으로 이루어졌으며, 최근에 와서야 실전투자를 위한 매매시스템(trading system) 개발에 대한 연구가 이루어지고 있다. 인공지능형 주가예측모형에서는 ANN(artificial neural networks), fuzzy system, SVM(Support Vector Machine) 등의 기법이 주로 활용되고 있다. 본 연구에서는 방향성매매를 위한 지능형 기계학습방법 중에서도 패턴인식에서 좋은 성과를 보이고 있는 은닉마코프 모형(Hidden Markov Model)을 이용한다. 실무적으로는 방향성 예측을 위해 주로 주가의 추세분석(Trend Analysis)을 활용한다. 다양한 기술적 지표를 이용한 추세분석에 기반한 시스템트레이딩(System Trading) 기법은 실전투자에서 점차 확대추세에 있다. 본 연구에서는 시스템트레이딩 기법 중 실무에서 많이 이용되는 이동평균교차전략(moving average cross)에 연속 은닉마코프모형을 적용한 지능형 매매시스템을 제안하고, 실제 주가자료를 이용한 시뮬레이션 결과를 제시한다. 세계적 선물시장으로 성장한 KOSPI200 선물시장에서 제안된 매매시스템의 장기간의 투자성과를 분석하기 위하여 지난 21년 동안의 KOSPI200 주가지수자료를 실증 분석하였다. 분석결과는 KOSPI200 주가지수선물의 방향성매매에서 제안된 CHMM기반 지능형 매매시스템이 실전에서 일반적으로 활용되는 시스템트레이딩 기법의 투자성과를 개선할 수 있음을 보여주었다.

Keywords

References

  1. 강창원, "주식시장에서의 시스템 트레이딩과 주관적 거래와의 비교 및 효용성 분석-미국선물 회사 중심으로", 한국유통과학회 2007년 동계학술대회 발표논문집, (2007), 421-455.
  2. 김광용, 이경락, "인공지능 시스템을 이용한 주가예측에 대한 연구", 대한경영학회지, 21권 6호 (2008), 2421-2449.
  3. 김범승, 김순협, "CHMM을 이용한 발매기 명령어의 음성인식에 관한 연구", 한국철도학회논문집, 12권 2호(2009), 285-290.
  4. 김선웅, 안현철, "Support Vector Machines와 유전자 알고리즘을 이용한 지능형 트레이딩 시스템 개발", 지능정보연구, 16권 1호(2010), 71-92.
  5. 박형준, 홍다혜, 김문현, "주식예측을 위한 은닉 마코프모델의 이용", 대한전기학회 하계학술대회논문집, (2007), 1860-1861.
  6. 안중호, 문홍집, "사이버 트레이딩 시스템을 통한 경쟁력강화 : 대신증권 사례를 중심으로", 1999 한국경영정보학회 추계학술대회, 1999.
  7. 허진영, 김경재, 한인구, "러프집합분석을 이용한 매매시점 결정", 지능정보연구, 16권 3호(2010), 77-97.
  8. Kim, S. W., "A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems", 지능정보연구, 16권 2호(2010), 12-32.
  9. Hassan, M. R. and B. Nath, "Stock Market Forecasting Using Hidden Markov Model : A New Approach", Proceedings of the Fifth International Conference on Intelligent Systems Design and Applications, (2005), 192-196.
  10. Rabiner, L. R., "A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition", Proc IEEE, Vol.77, No.2(1989), 257-286. https://doi.org/10.1109/5.18626
  11. Reynolds, D. A. and R. C. Rose, "Robust Text- Independent Speaker Identification Using Gaussian Mixture Speaker Models", IEEE Transactions on Speech and Audio Processing, Vol.3, No.1(1995), 72-83. https://doi.org/10.1109/89.365379