• Title/Summary/Keyword: Intelligent Trading System

Search Result 46, Processing Time 0.024 seconds

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Development of an Intelligent Trading System Using Support Vector Machines and Genetic Algorithms (Support Vector Machines와 유전자 알고리즘을 이용한 지능형 트레이딩 시스템 개발)

  • Kim, Sun-Woong;Ahn, Hyun-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.71-92
    • /
    • 2010
  • As the use of trading systems increases recently, many researchers are interested in developing intelligent trading systems using artificial intelligence techniques. However, most prior studies on trading systems have common limitations. First, they just adopted several technical indicators based on stock indices as independent variables although there are a variety of variables that can be used as independent variables for predicting the market. In addition, most of them focus on developing a model that predicts the direction of the stock market indices rather than one that can generate trading signals for maximizing returns. Thus, in this study, we propose a novel intelligent trading system that mitigates these limitations. It is designed to use both the technical indicators and the other non-price variables on the market. Also, it adopts 'two-threshold mechanism' so that it can transform the outcome of the stock market prediction model based on support vector machines to the trading decision signals like buy, sell or hold. To validate the usefulness of the proposed system, we applied it to the real world data-the KOSPI200 index from May 2004 to December 2009. As a result, we found that the proposed system outperformed other comparative models from the perspective of 'rate of return'.

Integrated Multiple Simulation for Optimizing Performance of Stock Trading Systems based on Neural Networks (통합 다중 시뮬레이션에 의한 신경망 기반 주식 거래 시스템의 성능 최적화)

  • Lee, Jae-Won;O, Jang-Min
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.127-134
    • /
    • 2007
  • There are many researches about the intelligent stock trading systems with the help of the advance of the artificial intelligence such as machine learning techniques, Though the establishment of the reasonable trading policy plays an important role in the performance of the trading systems most researches focused on the improvement of the predictability. Also some previous works, which treated the trading policy, treated the simplified versions dependent on the predictors in less systematic ways. In this paper, we propose the integrated multiple simulation' as a method of optimizing trading performance of stock trading systems. The propose method is adopted in the NXShell a development environment for neural network based stock trading systems. Under the proposed integrated multiple simulation', we simulate the multiple tradings for all combinations of the neural network's outputs and the trading policy parameters, evaluate the learning performance according to the various metrics and establish the optimal policy for a given prediction module based on the resulting performance. In the experiment, we present the trading policy comparison results using the stock value data from the KOSPI and KOSDAQ.

An Adaptive Recommendation System for Personalized Stock Trading Advice Using Artificial Neural Networks

  • Kaensar, Chayaporn;Chalidabhongse, Thanarat
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.931-934
    • /
    • 2005
  • This paper describes an adaptive recommendation system that provides real-time personalized trading advice to the investors based on their profiles and trading information environment. A proposed system integrates Stochastic technical analysis and artificial neural network that incorporates an adaptive user modeling. The user model is constructed and updated based on initial user profile and recorded user interactions with the system. The information presented to each individual user is also tailor-made to fit the user's behavior and preference. A system prototype was implemented in JAVA. Experiments used to evaluate the system's performance were done on both human subjects and synthetic users. The results show our proposed system is able to rapidly learn to provide appropriate advice to different types of users.

  • PDF

Trading rule extraction in stock market using the rough set approach

  • Kim, Kyoung-jae;Huh, Jin-nyoung;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.337-346
    • /
    • 1999
  • In this paper, we propose the rough set approach to extract trading rules able to discriminate between bullish and bearish markets in stock market. The rough set approach is very valuable to extract trading rules. First, it does not make any assumption about the distribution of the data. Second, it not only handles noise well, but also eliminates irrelevant factors. In addition, the rough set approach appropriate for detecting stock market timing because this approach does not generate the signal for trade when the pattern of market is uncertain. The experimental results are encouraging and prove the usefulness of the rough set approach for stock market analysis with respect to profitability.

  • PDF

A Forecasting System for KOSPI 200 Option Trading using Artificial Neural Network Ensemble (인공신경망 앙상블을 이용한 옵션 투자예측 시스템)

  • 이재식;송영균;허성회
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.489-497
    • /
    • 2000
  • After IMF situation, the money market environment is changing rapidly. Therefore, many companies including financial institutions and many individual investors are concerned about forecasting the money market, and they make an effort to insure the various profit and hedge methods using derivatives like option, futures and swap. In this research, we developed a prototype of forecasting system for KOSPI 200 option, especially call option, trading using artificial neural networks(ANN), To avoid the overfitting problem and the problem involved int the choice of ANN structure and parameters, we employed the ANN ensemble approach. We conducted two types of simulation. One is conducted with the hold signals taken into account, and the other is conducted without hold signals. Even though our models show low accuracy for the sample set extracted from the data collected in the early stage of IMF situation, they perform better in terms of profit and stability than the model that uses only the theoretical price.

  • PDF

Conceptual Framework for Pattern-Based Real-Time Trading System using Genetic Algorithm (유전알고리즘 활용한 실시간 패턴 트레이딩 시스템 프레임워크)

  • Lee, Suk-Jun;Jeong, Suk-Jae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.4
    • /
    • pp.123-129
    • /
    • 2013
  • The aim of this study is to design an intelligent pattern-based real-time trading system (PRTS) using rough set analysis of technical indicators, dynamic time warping (DTW), and genetic algorithm in stock futures market. Rough set is well known as a data-mining tool for extracting trading rules from huge data sets such as real-time data sets, and a technical indicator is used for the construction of the data sets. To measure similarity of patterns, DTW is used over a given period. Through an empirical study, we identify the ideal performances that were profitable in various market conditions.

S & P 500 Stock Index' Futures Trading with Neural Networks (신경망을 이용한 S&P 500 주가지수 선물거래)

  • Park, Jae-Hwa
    • Journal of Intelligence and Information Systems
    • /
    • v.2 no.2
    • /
    • pp.43-54
    • /
    • 1996
  • Financial markets are operating 24 hours a day throughout the world and interrelated in increasingly complex ways. Telecommunications and computer networks tie together markets in the from of electronic entities. Financial practitioners are inundated with an ever larger stream of data, produced by the rise of sophisticated database technologies, on the rising number of market instruments. As conventional analytic techniques reach their limit in recognizing data patterns, financial firms and institutions find neural network techniques to solve this complex task. Neural networks have found an important niche in financial a, pp.ications. We a, pp.y neural networks to Standard and Poor's (S&P) 500 stock index futures trading to predict the futures marker behavior. The results through experiments with a commercial neural, network software do su, pp.rt future use of neural networks in S&P 500 stock index futures trading.

  • PDF

Selection Model of System Trading Strategies using SVM (SVM을 이용한 시스템트레이딩전략의 선택모형)

  • Park, Sungcheol;Kim, Sun Woong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.59-71
    • /
    • 2014
  • System trading is becoming more popular among Korean traders recently. System traders use automatic order systems based on the system generated buy and sell signals. These signals are generated from the predetermined entry and exit rules that were coded by system traders. Most researches on system trading have focused on designing profitable entry and exit rules using technical indicators. However, market conditions, strategy characteristics, and money management also have influences on the profitability of the system trading. Unexpected price deviations from the predetermined trading rules can incur large losses to system traders. Therefore, most professional traders use strategy portfolios rather than only one strategy. Building a good strategy portfolio is important because trading performance depends on strategy portfolios. Despite of the importance of designing strategy portfolio, rule of thumb methods have been used to select trading strategies. In this study, we propose a SVM-based strategy portfolio management system. SVM were introduced by Vapnik and is known to be effective for data mining area. It can build good portfolios within a very short period of time. Since SVM minimizes structural risks, it is best suitable for the futures trading market in which prices do not move exactly the same as the past. Our system trading strategies include moving-average cross system, MACD cross system, trend-following system, buy dips and sell rallies system, DMI system, Keltner channel system, Bollinger Bands system, and Fibonacci system. These strategies are well known and frequently being used by many professional traders. We program these strategies for generating automated system signals for entry and exit. We propose SVM-based strategies selection system and portfolio construction and order routing system. Strategies selection system is a portfolio training system. It generates training data and makes SVM model using optimal portfolio. We make $m{\times}n$ data matrix by dividing KOSPI 200 index futures data with a same period. Optimal strategy portfolio is derived from analyzing each strategy performance. SVM model is generated based on this data and optimal strategy portfolio. We use 80% of the data for training and the remaining 20% is used for testing the strategy. For training, we select two strategies which show the highest profit in the next day. Selection method 1 selects two strategies and method 2 selects maximum two strategies which show profit more than 0.1 point. We use one-against-all method which has fast processing time. We analyse the daily data of KOSPI 200 index futures contracts from January 1990 to November 2011. Price change rates for 50 days are used as SVM input data. The training period is from January 1990 to March 2007 and the test period is from March 2007 to November 2011. We suggest three benchmark strategies portfolio. BM1 holds two contracts of KOSPI 200 index futures for testing period. BM2 is constructed as two strategies which show the largest cumulative profit during 30 days before testing starts. BM3 has two strategies which show best profits during testing period. Trading cost include brokerage commission cost and slippage cost. The proposed strategy portfolio management system shows profit more than double of the benchmark portfolios. BM1 shows 103.44 point profit, BM2 shows 488.61 point profit, and BM3 shows 502.41 point profit after deducting trading cost. The best benchmark is the portfolio of the two best profit strategies during the test period. The proposed system 1 shows 706.22 point profit and proposed system 2 shows 768.95 point profit after deducting trading cost. The equity curves for the entire period show stable pattern. With higher profit, this suggests a good trading direction for system traders. We can make more stable and more profitable portfolios if we add money management module to the system.

A New Dynamic Auction Mechanism in the Supply Chain: N-Bilateral Optimized Combinatorial Auction (N-BOCA)

  • Choi, Jin-Ho;Chang, Yong-Sik;Han, In-Goo
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.379-390
    • /
    • 2005
  • In this paper, we introduce a new combinatorial auction mechanism - N-Bilateral Optimized Combinatorial Auction (N-BOCA). N-BOCA is a flexible iterative combinatorial auction model that offers optimized trading for multi-suppliers and multi-purchasers in the supply chain. We design the N-BOCA system from the perspectives of architecture, protocol, and trading strategy. Under the given N-BOCA architecture and protocol, auctioneers and bidders have diverse decision strategies for winner determination. This needs flexible modeling environments. Hence, we propose an optimization modeling agent for bid and auctioneer selection. The agent has the capability to automatic model formulation for Integer Programming modeling. Finally, we show the viability of N-BOCA through prototype and experiments. The results say both higher allocation efficiency and effectiveness compared with I-to-N general combinatorial auction mechanisms.

  • PDF